Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38979161

RESUMO

When cells in a primary tumor work together to invade into nearby tissue, this can lead to cell dissociations-cancer cells breaking off from the invading front-leading to metastasis. What controls the dissociation of cells, and whether they break off singly or in small groups? Can this be determined by cell-cell adhesion or chemotactic cues given to cells? We develop a physical model for this question, based on experiments that mimic aspects of cancer cell invasion using microfluidic devices with microchannels of different widths. Experimentally, most dissociation events ("ruptures") involve single cells breaking off, but we observe some ruptures of large groups ( ∼ 20 cells) in wider channels. The rupture probability is nearly independent of channel width. We recapitulate the experimental results with a phase field cell motility model by introducing three different cell states (follower, guided, and high-motility metabolically active leader cells) based on their spatial position. These leader cells may explain why single-cell rupture is the universal most probable outcome. Our simulation results show that cell-channel adhesion is necessary for cells in narrow channels to invade, and strong cell-cell adhesion leads to fewer but larger ruptures. Chemotaxis also influences the rupture behavior: Strong chemotaxis strength leads to larger and faster ruptures. Finally, we study the relationship between biological jamming transitions and cell dissociations. Our results suggest unjamming is necessary but not sufficient to create ruptures.

2.
Phys Rev E ; 109(5-1): 054408, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38907435

RESUMO

Cells that collide with each other repolarize away from contact, in a process called contact inhibition of locomotion (CIL), which is necessary for correct development of the embryo. CIL can occur even when cells make a micron-scale contact with a neighbor-much smaller than their size. How precisely can a cell sense cell-cell contact and repolarize in the correct direction? What factors control whether a cell recognizes it has contacted a neighbor? We propose a theoretical model for the limits of CIL where cells recognize the presence of another cell by binding the protein ephrin with the Eph receptor. This recognition is made difficult by the presence of interfering ligands that bind nonspecifically. Both theoretical predictions and simulation results show that it becomes more difficult to sense cell-cell contact when it is difficult to distinguish ephrin from the interfering ligands, or when there are more interfering ligands, or when the contact width decreases. However, the error of estimating contact position remains almost constant when the contact width changes. This happens because the cell gains spatial information largely from the boundaries of cell-cell contact. We study using statistical decision theory the likelihood of a false-positive CIL event in the absence of cell-cell contact, and the likelihood of a false negative where CIL does not occur when another cell is present. Our results suggest that the cell is more likely to make incorrect decisions when the contact width is very small or so large that it nears the cell's perimeter. However, in general, we find that cells have the ability to make reasonably reliable CIL decisions even for very narrow (micron-scale) contacts, even if the concentration of interfering ligands is ten times that of the correct ligands.


Assuntos
Inibição de Contato , Modelos Biológicos , Movimento Celular , Animais , Ligantes , Efrinas/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(22): e2318248121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38787878

RESUMO

For eukaryotic cells to heal wounds, respond to immune signals, or metastasize, they must migrate, often by adhering to extracellular matrix (ECM). Cells may also deposit ECM components, leaving behind a footprint that influences their crawling. Recent experiments showed that some epithelial cell lines on micropatterned adhesive stripes move persistently in regions they have previously crawled over, where footprints have been formed, but barely advance into unexplored regions, creating an oscillatory migration of increasing amplitude. Here, we explore through mathematical modeling how footprint deposition and cell responses to footprint combine to allow cells to develop oscillation and other complex migratory motions. We simulate cell crawling with a phase field model coupled to a biochemical model of cell polarity, assuming local contact with the deposited footprint activates Rac1, a protein that establishes the cell's front. Depending on footprint deposition rate and response to the footprint, cells on micropatterned lines can display many types of motility, including confined, oscillatory, and persistent motion. On two-dimensional (2D) substrates, we predict a transition between cells undergoing circular motion and cells developing an exploratory phenotype. Small quantitative changes in a cell's interaction with its footprint can completely alter exploration, allowing cells to tightly regulate their motion, leading to different motility phenotypes (confined vs. exploratory) in different cells when deposition or sensing is variable from cell to cell. Consistent with our computational predictions, we find in earlier experimental data evidence of cells undergoing both circular and exploratory motion.


Assuntos
Movimento Celular , Matriz Extracelular , Movimento Celular/fisiologia , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Humanos , Polaridade Celular/fisiologia , Modelos Biológicos , Animais , Adesão Celular/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Células Epiteliais/fisiologia
4.
ArXiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38659637

RESUMO

The motility of eukaryotic cells is strongly influenced by their environment, with confined cells often developing qualitatively different motility patterns from those migrating on simple two-dimensional substrates. Recent experiments, coupled with data-driven methods to extract a cell's equation of motion, showed that cancerous MDA-MB-231 cells persistently hop in a limit cycle when placed on two-state adhesive micropatterns (two large squares connected by a narrow bridge), while they remain stationary on average in rectangular confinements. In contrast, healthy MCF10A cells migrating on the two-state micropattern are bistable, i.e., they settle into either basin on average with only noise-induced hops between the two states. We can capture all these behaviors with a single computational phase field model of a crawling cell, under the assumption that contact with non-adhesive substrate inhibits the cell front. Our model predicts that larger and softer cells are more likely to persistently hop, while smaller and stiffer cells are more likely to be bistable. Other key factors controlling cell migration are the frequency of protrusions and their magnitude of noise. Our results show that relatively simple assumptions about how cells sense their geometry can explain a wide variety of different cell behaviors, and show the power of data-driven approaches to characterize both experiment and simulation.

5.
Biophys J ; 123(10): 1184-1194, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38532627

RESUMO

When cells measure concentrations of chemical signals, they may average multiple measurements over time in order to reduce noise in their measurements. However, when cells are in an environment that changes over time, past measurements may not reflect current conditions-creating a new source of error that trades off against noise in chemical sensing. What statistics in the cell's environment control this trade-off? What properties of the environment make it variable enough that this trade-off is relevant? We model a single eukaryotic cell sensing a chemical secreted from bacteria (e.g., folic acid). In this case, the environment changes because the bacteria swim-leading to changes in the true concentration at the cell. We develop analytical calculations and stochastic simulations of sensing in this environment. We find that cells can have a huge variety of optimal sensing strategies ranging from not time averaging at all to averaging over an arbitrarily long time or having a finite optimal averaging time. The factors that primarily control the ideal averaging are the ratio of sensing noise to environmental variation and the ratio of timescales of sensing to the timescale of environmental variation. Sensing noise depends on the receptor-ligand kinetics, while environmental variation depends on the density of bacteria and the degradation and diffusion properties of the secreted chemoattractant. Our results suggest that fluctuating environmental concentrations may be a relevant source of noise even in a relatively static environment.


Assuntos
Modelos Biológicos , Processos Estocásticos , Ácido Fólico/metabolismo , Cinética , Difusão
6.
ArXiv ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37961746

RESUMO

Cells that collide with each other repolarize away from contact, in a process called contact inhibition of locomotion (CIL), which is necessary for correct development of the embryo. CIL can occur even when cells make a micron-scale contact with a neighbor - much smaller than their size. How precisely can a cell sense cell-cell contact and repolarize in the correct direction? What factors control whether a cell recognizes it has contacted a neighbor? We propose a theoretical model for the limits of CIL where cells recognize the presence of another cell by binding the protein ephrin with the Eph receptor. This recognition is made difficult by the presence of interfering ligands that bind nonspecifically. Both theoretical predictions and simulation results show that it becomes more difficult to sense cell-cell contact when it is difficult to distinguish ephrin from the interfering ligands, or when there are more interfering ligands, or when the contact width decreases. However, the error of estimating contact position remains almost constant when the contact width changes. This happens because the cell gains spatial information largely from the boundaries of cell-cell contact. We study using statistical decision theory the likelihood of a false positive CIL event in the absence of cell-cell contact, and the likelihood of a false negative where CIL does not occur when another cell is present. Our results suggest that the cell is more likely to make incorrect decisions when the contact width is very small or so large that it nears the cell's perimeter. However, in general, we find that cells have the ability to make reasonably reliable CIL decisions even for very narrow (micron-scale) contacts, even if the concentration of interfering ligands is ten times that of the correct ligands.

7.
bioRxiv ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37745526

RESUMO

For eukaryotic cells to heal wounds, respond to immune signals, or metastasize, they must migrate, often by adhering to extracellular matrix. Cells may also secrete matrix factors, leaving behind a footprint that influences their crawling. Recent experiments showed that epithelial cells on micropatterned adhesive stripes move persistently in regions they have previously crawled over, where footprints have been formed, but barely advance into unexplored regions, creating an oscillatory migration of increasing amplitude. Here, we explore through mathematical modeling how footprint secretion and cell responses to footprint combine to allow cells to develop oscillation and other complex migratory motions. We simulate cell crawling with a phase field model coupled to a biochemical model of cell polarity, assuming local contact with the secreted footprint activates Rac1, a polarity protein at the front of the cell. Depending on the footprint secretion rate and the response to the footprint, cells on micropatterned lines can display a variety of types of motility, including confined, oscillatory, and persistent motion. On 2D substrates, we predict a transition between cells undergoing circular motion and cells developing a more exploratory phenotype. Our model shows how minor changes in a cell's interaction with its footprint can completely alter exploration, allowing cells to tightly regulate their motion, as well as leading to a wide spectrum of behaviors when secretion or sensing is variable from cell to cell. Consistent with our computational predictions, we find in earlier experimental data evidence of cells undergoing both circular and exploratory motion. Our work proposes a new paradigm for how cells regulate their own motility.

8.
Proc Natl Acad Sci U S A ; 120(30): e2301197120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37463218

RESUMO

Collective movement and organization of cell monolayers are important for wound healing and tissue development. Recent experiments highlighted the importance of liquid crystal order within these layers, suggesting that +1 topological defects have a role in organizing tissue morphogenesis. We study fibroblast organization, motion, and proliferation on a substrate with micron-sized ridges that induce +1 and -1 topological defects using simulation and experiment. We model cells as self-propelled deformable ellipses that interact via a Gay-Berne potential. Unlike earlier work on other cell types, we see that density variation near defects is not explained by collective migration. We propose instead that fibroblasts have different division rates depending on their area and aspect ratio. This model captures key features of our previous experiments: the alignment quality worsens at high cell density and, at the center of the +1 defects, cells can adopt either highly anisotropic or primarily isotropic morphologies. Experiments performed with different ridge heights confirm a prediction of this model: Suppressing migration across ridges promotes higher cell density at the +1 defect. Our work enables a mechanism for tissue patterning using topological defects without relying on cell migration.


Assuntos
Fibroblastos , Cicatrização , Divisão Celular , Movimento Celular , Morfogênese
9.
Sci Adv ; 9(2): eabq6480, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36630496

RESUMO

Cells tune adherens junction dynamics to regulate epithelial integrity in diverse (patho)physiological processes, including cancer metastasis. We hypothesized that the spatially confining architecture of peritumor stroma promotes metastatic cell dissemination by remodeling cell-cell adhesive interactions. By combining microfluidics with live-cell imaging, FLIM/FRET biosensors, and optogenetic tools, we show that confinement induces leader cell dissociation from cohesive ensembles. Cell dissociation is triggered by myosin IIA (MIIA) dismantling of E-cadherin cell-cell junctions, as recapitulated by a mathematical model. Elevated MIIA contractility is controlled by RhoA/ROCK activation, which requires distinct guanine nucleotide exchange factors (GEFs). Confinement activates RhoA via nucleocytoplasmic shuttling of the cytokinesis-regulatory proteins RacGAP1 and Ect2 and increased microtubule dynamics, which results in the release of active GEF-H1. Thus, confining microenvironments are sufficient to induce cell dissemination from primary tumors by remodeling E-cadherin cell junctions via the interplay of microtubules, nuclear trafficking, and RhoA/ROCK/MIIA pathway and not by down-regulating E-cadherin expression.


Assuntos
Citocinese , Junções Intercelulares , Caderinas/metabolismo , Citocinese/fisiologia , Junções Intercelulares/metabolismo , Microtúbulos/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Humanos
10.
Biophys J ; 122(1): 130-142, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36397670

RESUMO

During wound healing, fish keratocyte cells undergo galvanotaxis where they follow a wound-induced electric field. In addition to their stereotypical persistent motion, keratocytes can develop circular motion without a field or oscillate while crawling in the field direction. We developed a coarse-grained phenomenological model that captures these keratocyte behaviors. We fit this model to experimental data on keratocyte response to an electric field being turned on. A critical element of our model is a tendency for cells to turn toward their long axis, arising from a coupling between cell shape and velocity, which gives rise to oscillatory and circular motion. Galvanotaxis is influenced not only by the field-dependent responses, but also cell speed and cell shape relaxation rate. When the cell reacts to an electric field being turned on, our model predicts that stiff, slow cells react slowly but follow the signal reliably. Cells that polarize and align to the field at a faster rate react more quickly and follow the signal more reliably. When cells are exposed to a field that switches direction rapidly, cells follow the average of field directions, while if the field is switched more slowly, cells follow a "staircase" pattern. Our study indicated that a simple phenomenological model coupling cell speed and shape is sufficient to reproduce a broad variety of different keratocyte behaviors, ranging from circling to oscillation to galvanotactic response, by only varying a few parameters.


Assuntos
Eletricidade , Resposta Táctica , Animais , Movimento Celular/fisiologia , Forma Celular , Cicatrização
11.
Phys Rev E ; 108(6-1): 064411, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38243498

RESUMO

Eukaryotic cells can polarize and migrate in response to electric fields via "galvanotaxis," which aids wound healing. Experimental evidence suggests cells sense electric fields via molecules on the cell's surface redistributing via electrophoresis and electroosmosis, though the sensing species has not yet been conclusively identified. We develop a model that links sensor redistribution and galvanotaxis using maximum likelihood estimation. Our model predicts a single universal curve for how galvanotactic directionality depends on field strength. We can collapse measurements of galvanotaxis in keratocytes, neural crest cells, and granulocytes to this curve, suggesting that stochasticity due to the finite number of sensors may limit galvanotactic accuracy. We find cells can achieve experimentally observed directionalities with either a few (∼100) highly polarized sensors or many (∼10^{4}) sensors with an ∼6-10% change in concentration across the cell. We also identify additional signatures of galvanotaxis via sensor redistribution, including the presence of a tradeoff between accuracy and variance in cells being controlled by rapidly switching fields. Our approach shows how the physics of noise at the molecular scale can limit cell-scale galvanotaxis, providing important constraints on sensor properties and allowing for new tests to determine the specific molecules underlying galvanotaxis.


Assuntos
Resposta Táctica , Movimento Celular/fisiologia , Eletricidade , Eletroforese
12.
Phys Rev E ; 108(6-1): 064407, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38243534

RESUMO

Membrane curvature sensing is essential for a diverse range of biological processes. Recent experiments have revealed that a single nanometer-sized septin protein has different binding rates to membrane-coated glass beads of 1-µm and 3-µm diameters, even though the septin is orders of magnitude smaller than the beads. This sensing ability is especially surprising since curvature-sensing proteins must deal with persistent thermal fluctuations of the membrane, leading to discrepancies between the bead's curvature and the local membrane curvature sensed instantaneously by a protein. Using continuum models of fluctuating membranes, we investigate whether it is feasible for a protein acting as a perfect observer of the membrane to sense micron-scale curvature either by measuring local membrane curvature or by using bilayer lipid densities as a proxy. To do this, we develop algorithms to simulate lipid density and membrane shape fluctuations. We derive physical limits to the sensing efficacy of a protein in terms of protein size, membrane thickness, membrane bending modulus, membrane-substrate adhesion strength, and bead size. To explain the experimental protein-bead association rates, we develop two classes of predictive models: (i) for proteins that maximally associate to a preferred curvature and (ii) for proteins with enhanced association rates above a threshold curvature. We find that the experimentally observed sensing efficacy is close to the theoretical sensing limits imposed on a septin-sized protein. Protein-membrane association rates may depend on the curvature of the bead, but the strength of this dependence is limited by the fluctuations in membrane height and density.


Assuntos
Bicamadas Lipídicas , Septinas , Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Septinas/metabolismo , Proteínas/metabolismo
13.
Phys Rev E ; 106(5-1): 054413, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36559372

RESUMO

Groups of eukaryotic cells can coordinate their crawling motion to follow cues more effectively, stay together, or invade new areas. This collective cell migration depends on cell-cell interactions, which are often studied by colliding pairs of cells together. Can the outcome of these collisions be predicted? Recent experiments on trains of colliding epithelial cells suggest that cells with a smaller contact angle to the surface or larger speeds are more likely to maintain their direction ("win") upon collision. When should we expect shape or speed to correlate with the outcome of a collision? To investigate this question, we build a model for two-cell collisions within the phase field framework, which allows for cell shape changes. We can reproduce the observation that cells with high speed and small contact angles are more likely to win with two different assumptions for how cells interact: (1) velocity aligning, in which we hypothesize that cells sense their own velocity and align to it over a finite timescale, and (2) front-front contact repolarization, where cells polarize away from cell-cell contact, akin to contact inhibition of locomotion. Surprisingly, though we simulate collisions between cells with widely varying properties, in each case, the probability of a cell winning is completely captured by a single summary variable: its relative speed (in the velocity-aligning model) or its relative contact angle (in the contact repolarization model). Both models are currently consistent with reported experimental results, but they can be distinguished by varying cell contact angle and speed through orthogonal perturbations.

14.
Proc Natl Acad Sci U S A ; 119(31): e2121302119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35905323

RESUMO

Some dividing cells sense their shape by becoming polarized along their long axis. Cell polarity is controlled in part by polarity proteins, like Rho GTPases, cycling between active membrane-bound forms and inactive cytosolic forms, modeled as a "wave-pinning" reaction-diffusion process. Does shape sensing emerge from wave pinning? We show that wave pinning senses the cell's long axis. Simulating wave pinning on a curved surface, we find that high-activity domains migrate to peaks and troughs of the surface. For smooth surfaces, a simple rule of minimizing the domain perimeter while keeping its area fixed predicts the final position of the domain and its shape. However, when we introduce roughness to our surfaces, shape sensing can be disrupted, and high-activity domains can become localized to locations other than the global peaks and valleys of the surface. On rough surfaces, the domains of the wave-pinning model are more robust in finding the peaks and troughs than the minimization rule, although both can become trapped in steady states away from the peaks and valleys. We can control the robustness of shape sensing by altering the Rho GTPase diffusivity and the domain size. We also find that the shape-sensing properties of cell polarity models can explain how domains localize to curved regions of deformed cells. Our results help to understand the factors that allow cells to sense their shape-and the limits that membrane roughness can place on this process.


Assuntos
Polaridade Celular , Forma Celular , Difusão , Modelos Biológicos , Proteínas rho de Ligação ao GTP/química
15.
Cell ; 185(11): 1809-1810, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35584700

RESUMO

In this issue of Cell, Palmquist et al. (2022) reconstitute the ordered follicle pattern of avian skin ex vivo and show that this pattern can arise from a mechanical instability arising from cell contractility driving tissue flow.


Assuntos
Pele
16.
Phys Rev E ; 105(4-1): 044410, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35590664

RESUMO

Eukaryotic cells sense chemical gradients to decide where and when to move. Clusters of cells can sense gradients more accurately than individual cells by integrating measurements of the concentration made across the cluster. Is this gradient-sensing accuracy impeded when cells have limited knowledge of their position within the cluster, i.e., limited positional information? We apply maximum likelihood estimation to study gradient-sensing accuracy of a cluster of cells with finite positional information. If cells must estimate their location within the cluster, this lowers the accuracy of collective gradient sensing. We compare our results with a tug-of-war model where cells respond to the gradient by polarizing away from their neighbors without relying on their positional information. As the cell positional uncertainty increases, there is a trade-off where the tug-of-war model responds more accurately to the chemical gradient. However, for sufficiently large cell clusters or sufficiently shallow chemical gradients, the tug-of-war model will always be suboptimal to one that integrates information from all cells, even if positional uncertainty is high.

17.
Soft Matter ; 17(43): 9876-9892, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34651152

RESUMO

The eukaryotic cell's cytoskeleton is a prototypical example of an active material: objects embedded within it are driven by molecular motors acting on the cytoskeleton, leading to anomalous diffusive behavior. Experiments tracking the behavior of cell-attached objects have observed anomalous diffusion with a distribution of displacements that is non-Gaussian, with heavy tails. This has been attributed to "cytoquakes" or other spatially extended collective effects. We show, using simulations and analytical theory, that a simple continuum active gel model driven by fluctuating force dipoles naturally creates heavy power-law tails in cytoskeletal displacements. We predict that this power law exponent should depend on the geometry and dimensionality of where force dipoles are distributed through the cell; we find qualitatively different results for force dipoles in a 3D cytoskeleton and a quasi-two-dimensional cortex. We then discuss potential applications of this model both in cells and in synthetic active gels.


Assuntos
Citoesqueleto , Microtúbulos , Difusão , Géis , Fenômenos Mecânicos
18.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33737392

RESUMO

Contact inhibition of locomotion (CIL), in which cells repolarize and move away from contact, is now established as a fundamental driving force in development, repair, and disease biology. Much of what we know of CIL stems from studies on two-dimensional (2D) substrates that do not provide an essential biophysical cue-the curvature of extracellular matrix fibers. We discover rules controlling outcomes of cell-cell collisions on suspended nanofibers and show them to be profoundly different from the stereotyped CIL behavior on 2D substrates. Two approaching cells attached to a single fiber do not repolarize upon contact but rather usually migrate past one another. Fiber geometry modulates this behavior; when cells attach to two fibers, reducing their freedom to reorient, only one cell repolarizes on contact, leading to the cell pair migrating as a single unit. CIL outcomes also change when one cell has recently divided and moves with high speed-cells more frequently walk past each other. Our computational model of CIL in fiber geometries reproduces the core qualitative results of the experiments robustly to model parameters. Our model shows that the increased speed of postdivision cells may be sufficient to explain their increased walk-past rate. We also identify cell-cell adhesion as a key mediator of collision outcomes. Our results suggest that characterizing cell-cell interactions on flat substrates, channels, or micropatterns is not sufficient to predict interactions in a matrix-the geometry of the fiber can generate entirely new behaviors.


Assuntos
Técnicas de Cultura de Células , Movimento Celular , Fenômenos Fisiológicos Celulares , Inibição de Contato , Nanofibras , Matriz Extracelular/metabolismo
19.
Phys Rev E ; 103(1-1): 012402, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33601617

RESUMO

Cells of the social amoeba Dictyostelium discoideum migrate to a source of periodic traveling waves of chemoattractant as part of a self-organized aggregation process. An important part of this process is cellular memory, which enables cells to respond to the front of the wave and ignore the downward gradient in the back of the wave. During this aggregation, the background concentration of the chemoattractant gradually rises. In our microfluidic experiments, we exogenously applied periodic waves of chemoattractant with various background levels. We find that increasing background does not make detection of the wave more difficult, as would be naively expected. Instead, we see that the chemotactic efficiency significantly increases for intermediate values of the background concentration but decreases to almost zero for large values in a switch-like manner. These results are consistent with a computational model that contains a bistable memory module, along with a nonadaptive component. Within this model, an intermediate background level helps preserve directed migration by keeping the memory activated, but when the background level is higher, the directional stimulus from the wave is no longer sufficient to activate the bistable memory, suppressing directed migration. These results suggest that raising levels of chemoattractant background may facilitate the self-organized aggregation in Dictyostelium colonies.


Assuntos
Fatores Quimiotáticos/farmacologia , Quimiotaxia/efeitos dos fármacos , AMP Cíclico/metabolismo , Dictyostelium/citologia , Dictyostelium/efeitos dos fármacos , Dictyostelium/metabolismo , Relação Dose-Resposta a Droga , Modelos Biológicos
20.
Soft Matter ; 16(5): 1349-1358, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31934705

RESUMO

Eukaryotic cell motility is crucial during development, wound healing, the immune response, and cancer metastasis. Some eukaryotic cells can swim, but cells more commonly adhere to and crawl along the extracellular matrix. We study the relationship between hydrodynamics and adhesion that describe whether a cell is swimming, crawling, or combining these motions. Our simple model of a cell, based on the three-sphere swimmer, is capable of both swimming and crawling. As cell-matrix adhesion strength increases, the influence of hydrodynamics on migration diminishes. Cells with significant adhesion can crawl with speeds much larger than their nonadherent, swimming counterparts. We predict that, while most eukaryotic cells are in the strong-adhesion limit, increasing environment viscosity or decreasing cell-matrix adhesion could lead to significant hydrodynamic effects even in crawling cells. Signatures of hydrodynamic effects include a dependence of cell speed on the presence of a nearby substrate or interactions between noncontacting cells. These signatures will be suppressed at large adhesion strengths, but even strongly adherent cells will generate relevant fluid flows that will advect nearby passive particles and swimmers.


Assuntos
Movimento Celular , Células Eucarióticas/química , Células Eucarióticas/citologia , Animais , Fenômenos Biomecânicos , Adesão Celular , Humanos , Hidrodinâmica , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...