Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 150(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37846593

RESUMO

In concert with other phytohormones, auxin regulates plant growth and development. However, how auxin and other phytohormones coordinately regulate distinct processes is not fully understood. In this work, we uncover an auxin-abscisic acid (ABA) interaction module in Arabidopsis that is specific to coordinating activities of these hormones in the hypocotyl. From our forward genetics screen, we determine that ABA biosynthesis is required for the full effects of auxin on hypocotyl elongation. Our data also suggest that ABA biosynthesis is not required for the inhibitory effects of auxin treatment on root elongation. Our transcriptome analysis identified distinct auxin-responsive genes in root and shoot tissues, which is consistent with differential regulation of growth in these tissues. Further, our data suggest that many gene targets repressed upon auxin treatment require an intact ABA pathway for full repression. Our results support a model in which auxin stimulates ABA biosynthesis to fully regulate hypocotyl elongation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Reguladores de Crescimento de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Ácido Abscísico/metabolismo , Hipocótilo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas
2.
J Exp Bot ; 74(21): 6541-6550, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37498739

RESUMO

Crosstalk between auxin and cytokinin contributes to widespread developmental processes, including root and shoot meristem maintenance, phyllotaxy, and vascular patterning. However, our understanding of crosstalk between these hormones is limited primarily to angiosperms. The moss Physcomitrium patens (formerly Physcomitrella patens) is a powerful system for studying plant hormone function. Auxin and cytokinin play similar roles in regulating moss gametophore (shoot) architecture, to those in flowering plant shoots. However, auxin-cytokinin crosstalk is poorly understood in moss. Here we find that the ratio of auxin to cytokinin is an important determinant of development in P. patens, especially during leaf development and branch stem cell initiation. Addition of high levels of auxin to P. patens gametophores blocks leaf outgrowth. However, simultaneous addition of high levels of both auxin and cytokinin partially restores leaf outgrowth, suggesting that the ratio of these hormones is the predominant factor. Likewise, during branch initiation and outgrowth, chemical inhibition of auxin synthesis phenocopies cytokinin application. Finally, cytokinin-insensitive mutants resemble plants with altered auxin signaling and are hypersensitive to auxin. In summary, our results suggest that the ratio between auxin and cytokinin signaling is the basis for developmental decisions in the moss gametophore.


Assuntos
Briófitas , Bryopsida , Citocininas/farmacologia , Ácidos Indolacéticos/farmacologia , Bryopsida/genética , Meristema , Folhas de Planta , Hormônios
3.
Proc Natl Acad Sci U S A ; 119(14): e2116860119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344421

RESUMO

SignificancePlants grow from their tips. The gametophore (shoot-like organ) tip of the moss Physcomitrium patens is a single cell that performs the same functions as those of multicellular flowering plants, producing the cells that make leaves and regenerating new stem cells to maintain the shoot tip. Several pathways, including CLAVATA and cytokinin hormonal signaling, regulate stem cell abundance in flowering plants and in mosses, although the mechanisms whereby these pathways regulate stem cell abundance and their conservation between these plant lineages is poorly understood. Using moss, we investigated how PpCLAVATA and cytokinin signaling interact. Overall, we found evidence that PpCLAVATA and cytokinin signaling interact similarly in moss and flowering plants, despite their distinct anatomies, life cycles, and evolutionary distance.


Assuntos
Bryopsida , Meristema , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Meristema/metabolismo , Brotos de Planta/metabolismo
5.
J Plant Res ; 133(3): 331-342, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32333315

RESUMO

Plants maintain populations of stem cells to generate new organs throughout the course of their lives. The pathways that regulate plant stem cell maintenance have garnered great interest over the past decades, as variation in these pathways contributes plant morphological diversity and can be harnessed for crop improvement. In order to facilitate cross-species comparisons of gene function and better understand how these stem cell regulatory pathways evolved, we undertook a functionally informed phylogenetic analysis of leucine-rich receptor-like kinases (LRR-RLK) and related proteins across diverse land plant model systems. Based on our phylogenetic analysis and on functional data, we propose a naming scheme for these stem cell signaling genes. We discovered evidence for frequent loss of protein domains in angiosperms but not in bryophytes. In addition, several clades of stem cell signaling genes are closely related to genes that function in immunity, although these distinct developmental and immune functions likely separated or after the divergence of lycophytes and angiosperms. Overall, the phylogenetic framework and evolutionary hypotheses we provide here will empower future research on cross-species comparisons of stem cell signaling pathways.


Assuntos
Evolução Molecular , Genes de Plantas , Magnoliopsida/citologia , Células-Tronco/citologia , Magnoliopsida/genética , Filogenia , Transdução de Sinais
6.
Curr Opin Plant Biol ; 51: 96-104, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31280129

RESUMO

The control of cell identity and differentiation is critical for proper development. In plants, cell identity is largely determined by a cell's spatial context, which is communicated in the form of varying abundances of hormones. Two classes of hormones, the classical phytohormone cytokinin and the small CLE peptide hormones, are potent regulators of cell division and cell differentiation. While a relationship between these two classes of hormones is well-established at developing shoot tips, recent evidence suggests that CLE and cytokinin signaling converge on the same developmental processes across many different contexts and in widely divergent species. Here, we review evidence predominately from Arabidopsis thaliana and the moss Physcomitrella patens that supports a general model where CLE and cytokinin signaling are highly intertwined developmental regulators with antagonistic functions in shoots and synergistic functions in roots.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Citocininas , Reguladores de Crescimento de Plantas , Raízes de Plantas , Transdução de Sinais
7.
Curr Biol ; 28(16): R884-R887, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30130511

RESUMO

Models of leaf development have long predicted the existence of an organ-wide polarity field. Now, a robust analysis in a developing Arabidopsis leaf reveals the presence of a general and persistent cell polarity coordinated over the entire leaf.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Ciclo Celular , Polaridade Celular , Folhas de Planta
8.
Curr Biol ; 28(15): 2365-2376.e5, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30033333

RESUMO

How genes shape diverse plant and animal body forms is a key question in biology. Unlike animal cells, plant cells are confined by rigid cell walls, and cell division plane orientation and growth rather than cell movement determine overall body form. The emergence of plants on land coincided with a new capacity to rotate stem cell divisions through multiple planes, and this enabled three-dimensional (3D) forms to arise from ancestral forms constrained to 2D growth. The genes involved in this evolutionary innovation are largely unknown. The evolution of 3D growth is recapitulated during the development of modern mosses when leafy shoots arise from a filamentous (2D) precursor tissue. Here, we show that a conserved, CLAVATA peptide and receptor-like kinase pathway originated with land plants and orients stem cell division planes during the transition from 2D to 3D growth in a moss, Physcomitrella. We find that this newly identified role for CLAVATA in regulating cell division plane orientation is shared between Physcomitrella and Arabidopsis. We report that roles for CLAVATA in regulating cell proliferation and cell fate are also shared and that CLAVATA-like peptides act via conserved receptor components in Physcomitrella. Our results suggest that CLAVATA was a genetic novelty enabling the morphological innovation of 3D growth in land plants.


Assuntos
Bryopsida/genética , Proliferação de Células/genética , Evolução Molecular , Proteínas de Plantas/genética , Evolução Biológica , Bryopsida/crescimento & desenvolvimento , Bryopsida/metabolismo , Proteínas de Plantas/metabolismo
9.
Arch Phys Med Rehabil ; 89(2): 269-74, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18226650

RESUMO

OBJECTIVE: To determine outcomes after administration of a prone lumbar traction protocol. DESIGN: Prospective, longitudinal, case series. SETTING: Suburban, chiropractic practice. PARTICIPANTS: A total of 296 subjects with low back pain (LBP) and evidence of a degenerative and/or herniated intervertebral disk at 1 or more levels of the lumbar spine. We excluded patients involved in litigation and those receiving workers' compensation. INTERVENTION: An 8-week course of prone lumbar traction, using the vertebral axial decompression (VAX-D) system, consisting of five 30-minute sessions a week for 4 weeks, followed by one 30-minute session a week for 4 additional weeks. MAIN OUTCOME MEASURES: The numeric pain rating scale and the Roland-Morris Disability Questionnaire (RMDQ) were completed at preintervention, discharge (within 2 weeks of the last visit), and at 30 days and 180 days after discharge. Intention-to-treat strategies were used to account for those subjects lost to follow-up. RESULTS: A total of 250 (84.4%) subjects completed the treatment protocol. On the 30-day follow-up, 247 (83.4%) subjects were available; on the 180-day follow-up, data were available for 241 (81.4%) subjects. We noted significant improvements for all postintervention outcome scores when compared with preintervention scores (P<.01). CONCLUSIONS: Traction applied in the prone position using the VAX-D for 8 weeks was associated with improvements in pain intensity and RMDQ scores at discharge, and at 30 and 180 days after discharge in a sample of patients with activity-limiting LBP. Causal relationships between these outcomes and the intervention should not be made until further study is performed using randomized comparison groups.


Assuntos
Dor Lombar/reabilitação , Manipulação da Coluna , Tração/métodos , Adulto , Feminino , Humanos , Estudos Longitudinais , Dor Lombar/fisiopatologia , Vértebras Lombares , Masculino , Medição da Dor , Decúbito Ventral , Estudos Prospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...