Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37176239

RESUMO

Polyethylene terephthalate (PET) is a thermoplastic material that is widely used in many application fields, such as packaging, construction and household products. Due to the relevant contribution of PET to global yearly solid waste, the recycling of such material has become an important issue. Disposed PET does not maintain the mechanical properties of virgin material, as exposure to water and other substances can cause multiple chain scissions, with subsequent degradation of the viscoelastic properties. For this reason, chain extension is needed to improve the final properties of the recycled product. Chain extension is generally performed through reactive extrusion. As the latter involves structural modification and flow of PET molecules, rheology is a relevant asset for understanding the process and tailoring the mechanical properties of the final products. This paper briefly reviews relevant rheological studies associated with the recycling of polyethylene terephthalate through the reactive extrusion process.

2.
ACS Appl Mater Interfaces ; 12(9): 10307-10316, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32058681

RESUMO

The accelerated increase in freshwater demand, particularly among populations displaced in remote locations where conventional water sources and the infrastructure required to produce potable water may be completely absent, highlights the urgent need in creating additional freshwater supply from untapped alternative sources via energy-efficient solutions. Herein, we present a hydrophilic and self-floating photothermal foam that can generate potable water from seawater and atmospheric moisture via solar-driven evaporation at its interface. Specifically, the foam shows an excellent solar-evaporation rate of 1.89 kg m-2 h-1 with a solar-to-vapor conversion efficiency of 92.7% under 1-Sun illumination. The collected water is shown to be suitable for potable use because when synthetic seawater samples (3.5 wt %) are used, the foam is able to cause at least 99.99% of salinity reduction. The foam can also be repeatedly used in multiple hydration-dehydration cycles, consisting of moisture absorption or water collection, followed by solar-driven evaporation; in each cycle, 1 g of the foam can harvest 250-1770 mg of water. To the best of our knowledge, this is the first report of a material that integrates all the desirable properties for solar evaporation, water collection, and atmospheric-water harvesting. The lightweight and versatility of the foam suggest that the developed foams can be a potent solution for water efficiency, especially for off-grid situations.

3.
ACS Appl Mater Interfaces ; 11(33): 30207-30217, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31389689

RESUMO

Herein, expanded graphite is successfully combined with waterborne polyurethane to develop porous foams with underwater oleophobic properties for the separation of surfactant-free, oil-in-water mixtures and emulsions. To obtain foams with different pore sizes and therefore with different performances in the oil-water filtration process, two solvent-free fabrication processes are adopted. In the first one, the expanded graphite granules are mixed with the waterborne polyurethane (PUEGr), and in the second method, calcium carbonate is introduced to the two-component mixture (PUEGr_t). In both cases, the obtained foams exhibit hydrophilicity and oleophilicity in air and oleophobicity underwater, and they have porous interconnected networks, while their pore size distribution differs significantly. The foams can be used as 3D filters, able to separate, through gravity, surfactant-free, oil-in-water mixtures (10% w/w oil in water) with high oil rejection efficiencies and flow rates that depend on the type of foam. In particular, in the gravity-driven filtration process using 100 mL of the feed liquid, the PUEGr foams have an oil rejection efficiency of 96.85% and flow rate of 9988 L m-2 h-1, while for the PUEGr_t foams the efficiency is higher (99.99%) and the flow rate is lower (8547 L m-2 h-1) due to their smaller pore size. Although the PUEGr_t foams have slower separation performance, they are more efficient for the separation of surfactant-free emulsions (1% w/w oil in water) reaching an oil rejection efficiency of 98.28%, higher than the 95.66% of the PUEGr foams of the same thickness. The foams can be used for several filtration cycles, as well as in harsh conditions without deteriorating their performance. The nature of raw materials, the simple solvent-free preparation method, the effective gravity-driven filtration even in harsh conditions, and their reusability suggest that the herein engineered foams have great potential for practical applications in oil-water separation through highly energy-efficient filtration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...