Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Cardiol ; 413: 132319, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971535

RESUMO

BACKGROUND: The aim of this cross-sectional study was to investigate the association of left ventricular (LV) strain parameters with demographics, clinical data, cardiovascular magnetic resonance (CMR) findings, and cardiac complications (heart failure and arrhythmias) in patients with ß-thalassemia major (ß-TM). METHOD: We considered 266 ß-TM patients (134 females, 37.08 ± 11.60 years) consecutively enrolled in the Extension-Myocardial Iron Overload in Thalassemia (E-MIOT) project and 80 healthy controls (50 females, mean age 39.77 ± 11.29 years). The CMR protocol included cine images for the assessment of global longitudinal strain (GLS), global circumferential strain (GCS), and global radial strain (GRS) using feature tracking (FT) and for the quantification of LV function parameters, the T2* technique for the assessment of myocardial iron overload, and late gadolinium enhancement (LGE) technique. RESULTS: In comparison to the healthy control group, ß-TM patients showed impaired GLS, GCS, and GRS values. Among ß-TM patients, sex was identified as the sole independent determinant of all LV strain parameters. All LV strain parameters displayed a significant correlation with LV end-diastolic volume index, end-systolic volume index, mass index, and ejection fraction, and with the number of segments exhibiting LGE. Only GLS exhibited a significant correlation with global heart T2* values and the number of segments with T2* < 20 ms. Patients with cardiac complications exhibited significantly impaired GLS compared to those without cardiac complications. CONCLUSION: In patients with ß-TM, GLS, GCS, and GRS were impaired in comparison with control subjects. Among LV strain parameters, only GLS demonstrated a significant association with cardiac iron levels and complications.

2.
Environ Sci Pollut Res Int ; 25(9): 8148-8160, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28357799

RESUMO

Liriodendron tulipifera (known as the tulip tree) is a woody species that has been previously classified as sensitive to ozone (O3) in terms of visible leaf injuries and photosynthetic primary reactions. The objective of this work is to give a thorough description of the detoxification mechanisms that are at the basis of O3 sensitivity. Biochemical and molecular markers were used to characterize the response of 1-year-old saplings exposed to O3 (120 ppb, 5 h day-1, for 45 consecutive days) under controlled conditions. O3 effects resulted in a less efficient metabolism of Halliwell-Asada cycle as confirmed by the diminished capacity to convert the oxidized forms of ascorbate and glutathione in the reduced ones (AsA and GSH, respectively). The reduced activity of AsA and GSH regenerating enzymes indicates that de novo AsA biosynthesis occurred. This compound could be a cofactor of several plant-specific enzymes that are involved in the early part of the phenylpropanoid and flavonoid biosynthesis pathway, as confirmed by the significant rise of PAL activity (+75%). The induction of the defence-related secondary metabolites (in particular, rutin and caffeic acid were about threefold higher) and the concomitant increase in transcript levels of PAL and CHS genes (+120 and 30%, respectively) suggest that L. tulipifera utilized this route in order to partially counteract the O3-induced oxidative damage.


Assuntos
Ácido Ascórbico/química , Glutationa/química , Inativação Metabólica/efeitos dos fármacos , Ozônio/química , Folhas de Planta/química , Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Liriodendron , Oxirredução , Fotossíntese
3.
Environ Sci Pollut Res Int ; 25(9): 8137-8147, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27995504

RESUMO

Physiological and biochemical responses to ozone (O3) (150 ppb, 8 h day-1, 35 consecutive days) of two Italian provenances (Piedmont and Tuscany) of Fraxinus excelsior L. were evaluated, with special attention to the role of phenylpropanoids. Our results indicate (i) the high O3 sensitivity especially of Piedmont provenance (in terms of visible injury, water status, and photosynthetic apparatus); (ii) although the intra-specific sensitivity to O3 between provenances differs (mainly due to different stomatal behaviors since only Tuscany plants partially avoided the uptake of the pollutant gas), both provenances showed detoxification and defense mechanisms; (iii) the crucial participation of phenylpropanoids, with a key role played by flavonoids (especially quercitrin): among this class of metabolites, isoquercitrin is the principal player in the lower O3 sensitivity of Tuscany plants, together with lignins; (iv) although coumarins (typical compounds of Fraxinus) were severely depressed by O3, isofraxidin was triggered suggesting a key role in reactive oxygen species (ROS) detoxification, as well as trans-chalcone. Furthermore, the different behavior of verbascoside and oleuropein among provenances lead us to speculate on their influence in the tentatively repair or acclimation shown by Piedmont plants at the end of the exposure. Finally, the intra-specific O3 sensitivity may be also due to de novo peaks triggered by O3 not yet associated to some chemicals.


Assuntos
Poluentes Atmosféricos/metabolismo , Antioxidantes/metabolismo , Ozônio/química , Espécies Reativas de Oxigênio/metabolismo , Poluentes Atmosféricos/química , Antioxidantes/química , Fraxinus , Itália , Fotossíntese , Folhas de Planta/química , Espécies Reativas de Oxigênio/química
4.
PLoS One ; 10(8): e0135056, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26270333

RESUMO

A comparative study on functional leaf treats and the diurnal dynamics of photosynthetic processes was conducted on 2-year-old potted plants of two grape (Vitis vinifera L.) varieties (Aleatico, ALE, and Trebbiano giallo, TRE), exposed under controlled conditions to realistic concentrations of the pollutant gas ozone (80 ppb for 5 h day(-1), 8:00-13:00 h, + 40 ppb for 5 h day(-1), 13:00-18:00 h). At constitutive levels, the morphological functional traits of TRE improved leaf resistance to gas exchange, suggesting that TRE is characterized by a potential high degree of tolerance to ozone. At the end of the treatment, both varieties showed typical visible injuries on fully expanded leaves and a marked alteration in the diurnal pattern of photosynthetic activity. This was mainly due to a decreased stomatal conductance (-27 and -29% in ALE and TRE, in terms of daily values in comparison to controls) and to a reduced mesophyllic functioning (+33 and +16% of the intercellular carbon dioxide concentration). Although the genotypic variability of grape regulates the response to oxidative stress, similar detoxification processes were activated, such as an increased content of total carotenoids (+64 and +30%, in ALE and TRE), enhanced efficiency of thermal energy dissipation within photosystem II (+32 and +20%) closely correlated with the increased de-epoxidation index (+26 and +22%) and variations in content of some osmolytes. In summary, we can conclude that: the daily photosynthetic performance of grapevine leaves was affected by a realistic exposure to ozone. In addition, the gas exchange and chlorophyll a fluorescence measurements revealed a different quali-quantitative response in the two varieties. The genotypic variability of V. vinifera and the functional leaf traits would seem to regulate the acclimatory response to oxidative stress and the degree of tolerance to ozone. Similar photoprotective mechanisms were activated in the two varieties, though to a different extent.


Assuntos
Ritmo Circadiano/efeitos dos fármacos , Ozônio/toxicidade , Vitis/efeitos dos fármacos , Vitis/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/fisiologia , Locos de Características Quantitativas , Vitis/genética
5.
Plant Physiol Biochem ; 74: 156-64, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24321873

RESUMO

Lemon balm (Melissa officinalis, L.; Lamiaceae) was exposed to realistic ozone (O3) dosages (80 ppb for 5 h), because high background levels of O3 are considered to be as harmful as episodic O3 regimes. Temporal alterations of different ecophysiological, biochemical and structural parameters were investigated in order to test if this species can be considered as an O3-bioindicator regarding changes in background concentrations. At the end of ozone exposure, the plants did not exhibit any visible foliar symptoms, as only at microscopic level a small number of dead cells were found. Photosynthetic processes, however, were significantly affected. During and after the treatment, ozone induced a reduction in CO2 fixation capacity (up to 52% after 12 h from the beginning of the treatment) due to mesophyllic limitations. Intercellular CO2 concentration significantly increased in comparison to controls (+90% at the end of the post-fumigation period). Furthermore impairment of carboxylation efficiency (-71% at the end of the post-fumigation period compared to controls in filtered air) and membrane damage in terms of integrity (as demonstrated by a significant rise in solute leakage) were observed. A regulatory adjustment of photosynthetic processes was highlighted during the post-fumigation period by the higher values of qNP and (1-q(P)) and therefore suggests a tendency to reduce the light energy used in photochemistry at the expense of the capacity to dissipate the excess as excitation energy. In addition, the chlorophyll a/b ratio and the de-epoxidation index increased, showing a rearrangement of the pigment composition of the photosynthetic apparatus and a marked activation of photoprotective mechanisms.


Assuntos
Melissa/efeitos dos fármacos , Ozônio/farmacologia , Relação Dose-Resposta a Droga
6.
Plant Cell Rep ; 32(12): 1965-80, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24081611

RESUMO

KEY MESSAGE: The study focuses on the interaction between reactive oxygen species and hormones that regulate the programmed cell death in plants of Melissa officinalis exposed to ozone. Interaction between hormone and redox signaling pathways has been investigated in ozone-stressed (200 ppb, 5 h) lemon balm to verify if the response resembles the biotic defense reactions. In comparison to controls, plants exhibited foliar injury and the cell death was induced by (1) biphasic production of hydrogen peroxide and superoxide radical; (2) hormonal regulation of ozone-induced lesion formation with a significant production of ethylene, salicylic, jasmonic and abscisic acid; (3) ozone degradation to reactive oxygen species and their detoxification by some enzymatic (such as superoxide dismutase) and non-enzymatic antioxidant systems (such as ascorbic acid, glutathione and carotenoids), that worked in cooperation without providing a defense against free radicals (such as confirmed by the modification of the antioxidant properties of leaf tissue). This integrated view showed that reactive oxygen species interact with hormonal signaling pathway regulating cell death and the sensitivity of lemon balm to ozone.


Assuntos
Melissa/citologia , Melissa/metabolismo , Ozônio/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ácido Abscísico/metabolismo , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Morte Celular/efeitos dos fármacos , Dissulfeto de Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Radical Hidroxila/metabolismo , Melissa/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Folhas de Planta/citologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Superóxidos/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...