Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(2): e0306523, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38190129

RESUMO

Influenza A virus infection during pregnancy can cause adverse maternal and fetal outcomes but the mechanism responsible remains elusive. Infection of outbred mice with 2009 H1N1 at embryonic day (E) 10 resulted in significant maternal morbidity, placental tissue damage and inflammation, fetal growth restriction, and developmental delays that lasted through weaning. Restriction of pulmonary virus replication was not inhibited during pregnancy, but infected dams had suppressed circulating and placental progesterone (P4) concentrations that were caused by H1N1-induced upregulation of pulmonary cyclooxygenase (COX)-1-, but not COX-2-, dependent synthesis and secretion of prostaglandin (PG) F2α. Treatment with 17-α-hydroxyprogesterone caproate (17-OHPC), a synthetic progestin that is safe to use in pregnancy, ameliorated the adverse maternal and fetal outcomes from H1N1 infection and prevented placental cell death and inflammation. These findings highlight the therapeutic potential of progestin treatments for influenza during pregnancy.IMPORTANCEPregnant individuals are at risk of severe outcomes from both seasonal and pandemic influenza A viruses. Influenza infection during pregnancy is associated with adverse fetal outcomes at birth and adverse consequences for offspring into adulthood. When outbred dams, with semi-allogenic fetuses, were infected with 2009 H1N1, in addition to pulmonary virus replication, lung damage, and inflammation, the placenta showed evidence of transient cell death and inflammation that was mediated by increased activity along the arachidonic acid pathway leading to suppression of circulating progesterone. Placental damage and suppressed progesterone were associated with detrimental effects on perinatal growth and developmental delays in offspring. Treatment of H1N1-infected pregnant mice with 17-OHPC, a synthetic progestin treatment that is safe to use in pregnancy, prevented placental damage and inflammation and adverse fetal outcomes. This novel therapeutic option for the treatment of influenza during pregnancy should be explored clinically.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Gravidez , Feminino , Camundongos , Animais , Humanos , Progesterona/farmacologia , Placenta , Inflamação , Feto/metabolismo
2.
bioRxiv ; 2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37745453

RESUMO

Influenza A virus infection during pregnancy can cause adverse maternal and fetal outcomes, but the mechanism responsible remains elusive. Infection of outbred mice with 2009 H1N1 at embryonic day (E) 10 resulted in significant maternal morbidity, placental tissue damage and inflammation, fetal growth restriction, and developmental delays that lasted through weaning. Restriction of pulmonary virus replication was not inhibited during pregnancy, but infected dams had suppressed circulating and placental progesterone (P4) concentrations that were caused by H1N1-induced upregulation of pulmonary cyclooxygenase (COX)-1, but not COX-2-, dependent synthesis and secretion of prostaglandin (PG) F2α. Treatment with 17-α-hydroxyprogesterone caproate (17-OHPC), a synthetic progestin that is safe to use in pregnancy, ameliorated the adverse maternal and fetal outcomes from H1N1 infection and prevented placental cell death and inflammation. These findings highlight the therapeutic potential of progestin treatments for influenza during pregnancy.

3.
Vaccine ; 40(47): 6818-6829, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36253217

RESUMO

Following influenza A virus (IAV) infection or vaccination during pregnancy, maternal antibodies are transferred to offspring in utero and during lactation. The age and sex of offspring may differentially impact the transfer and effects of maternal immunity on offspring. To evaluate the effects of maternal IAV infection on immunity in offspring, we intranasally inoculated pregnant mice with sublethal doses of mouse-adapted (ma) H1N1, maH3N2, or media (mock) at embryonic day 10. In offspring of IAV-infected dams, maternal subtype-specific antibodies peaked at postnatal day (PND) 23, remained detectable through PND 50, and were undetectable by PND 105 in both sexes. When offspring were challenged with homologous IAV at PND 23, both male and female offspring had greater clearance of pulmonary virus and less morbidity and mortality than offspring from mock-inoculated dams. Inactivated influenza vaccination (IIV) against homologous IAV at PND 23 caused lower vaccine-induced antibody responses and protection following live virus challenge in offspring from IAV than mock-infected dams, with this effect being more pronounced among female than male offspring. At PND 105, there was no impact of maternal infection status, but vaccination induced greater antibody responses and protection against challenge in female than male offspring of both IAV-infected and mock-inoculated dams. To determine if maternal antibody or infection interfered with vaccine-induced immunity and protection in early life, offspring were vaccinated and challenged against a heterosubtypic IAV (i.e., different IAV group than dam) at PND 23 or 105. Heterosubtypic IAV maternal immunity did not affect antibody responses after IIV or protection after live IAV challenge of vaccinated offspring at either age. Subtype-specific maternal IAV antibodies, therefore, provide protection independent of offspring sex but interfere with vaccine-induced immunity and protection in offspring with more pronounced effects among females than males.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Gravidez , Camundongos , Masculino , Feminino , Animais , Humanos , Anticorpos Antivirais
4.
Front Virol ; 22022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35573818

RESUMO

Zika virus (ZIKV) infection during pregnancy causes serious adverse outcomes to the developing fetus, including fetal loss and birth defects known as congenital Zika syndrome (CZS). The mechanism by which ZIKV infection causes these adverse outcomes and specifically, the interplay between the maternal immune response and ZIKV replication has yet to be fully elucidated. Using an immunocompetent mouse model of transplacental ZIKV transmission and adverse pregnancy outcomes, we have previously shown that Asian lineage ZIKV disrupts placental morphology and induces elevated secretion of IL-1ß. In the current manuscript, we characterized placental damage and inflammation during in utero African lineage ZIKV infection. Within 48 hours after ZIKV infection at embryonic day 10, viral RNA was detected in placentas and fetuses from ZIKA infected dams, which corresponded with placental damage and reduced fetal viability as compared with mock infected dams. Dams infected with ZIKV had reduced proportions of trophoblasts and endothelial cells and disrupted placental morphology compared to mock infected dams. While placental IL-1ß was increased in the placenta, but not the spleen, within 3 hours post infection, this was not caused by activation of the NLRP3 inflammasome. Using bulk mRNAseq from placentas of ZIKV and mock infected dams, ZIKV infection caused profound downregulation of the transcriptional activity of genes that may underly tissue morphology, neurological development, metabolism, cell signaling and inflammation, illustrating that in utero ZIKV infections causes disruption of pathways associated with CZS in our model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...