Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Genome ; 16(2): e20310, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36988044

RESUMO

The USDA Soybean Isoline Collection has been an invaluable resource for the soybean genetics and breeding community. This collection, established in 1972, consists of 611 near-isogenic lines (NILs) carrying one or multiple genes conferring traits that had been determined to exhibit Mendelian inheritance. It has been used in multiple studies on the genetic basis, physiology, and agronomy of these qualitative traits. Here, we used publicly available genotype (SoySNP50K), phenotype, and pedigree data on this collection to characterize the isogenicity of the NILs and identify chromosomal positions of unmapped genes. A total of 368 NILs had at least 80% identity to their recurrent parent and, thus, were useful for what can be called introgression mapping. Both on-target and off-target introgressions were evaluated. The size of on-target introgressions into individual NILs ranged from 61 kb to 8.4 Mb, whereas off-target introgressions ranged from 2.6 kb to 54.8 Mb. The observed large off-target introgressions indicated that some NILs carry introgressions nearly the size of an entire chromosome. By applying introgression mapping to genes that had never been mapped, we identified the likely chromosomal positions of six such genes: ab, im, lo, Np, pc, and Rpm. The size of mapping intervals was large in some cases (10.28 Mb for im) but small in others (0.21 Mb for Np). The results reported herein will provide future researchers with a resource to help select informative NILs for future studies, and provide a starting point to further fine map, and ultimately clone and functionally characterize these six soybean genes.


Assuntos
Glycine max , Locos de Características Quantitativas , Marcadores Genéticos , Melhoramento Vegetal , Glycine max/genética , Estados Unidos , United States Department of Agriculture
2.
PLoS One ; 15(10): e0240401, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33108793

RESUMO

We demonstrate strong self-referential effects in county-level data concerning use of the death penalty. We first show event-dependency using a repeated-event model. Higher numbers of previous events reduce the expected time delay before the next event. Second, we use a cross-sectional time-series approach to model the number of death sentences imposed in a given county in a given year. This model shows that the cumulative number of death sentences previously imposed in the same county is a strong predictor of the number imposed in a given year. Results raise troubling substantive implications: The number of death sentences in a given county in a given year is better predicted by that county's previous experience in imposing death than by the number of homicides. This explains the previously observed fact that a large share of death sentences come from a small number of counties and documents the self-referential aspects of use the death penalty. A death sentencing system based on racial dynamics and then amplified by self-referential dynamics is inconsistent with equal protection of the law, but this describes the United States system well.


Assuntos
Pena de Morte/estatística & dados numéricos , Estudos Transversais , Humanos , Modelos Teóricos , Estados Unidos/epidemiologia
3.
Sci Rep ; 9(1): 14757, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31611562

RESUMO

Developments in genomic and genome editing technologies have facilitated the mapping, cloning, and validation of genetic variants underlying trait variation. This study combined bulked-segregant analysis, array comparative genomic hybridization, and CRISPR/Cas9 methodologies to identify a CPR5 ortholog essential for proper trichome growth in soybean (Glycine max). A fast neutron mutant line exhibited short trichomes with smaller trichome nuclei compared to its parent line. A fast neutron-induced deletion was identified within an interval on chromosome 6 that co-segregated with the trichome phenotype. The deletion encompassed six gene models including an ortholog of Arabidopsis thaliana CPR5. CRISPR/Cas9 was used to mutate the CPR5 ortholog, resulting in five plants harboring a total of four different putative knockout alleles and two in-frame alleles. Phenotypic analysis of the mutants validated the candidate gene, and included intermediate phenotypes that co-segregated with the in-frame alleles. These findings demonstrate that the CPR5 ortholog is essential for proper growth and development of soybean trichomes, similar to observations in A. thaliana. Furthermore, this work demonstrates the value of using CRISPR/Cas9 to generate an allelic series and intermediate phenotypes for functional analysis of candidate genes and/or the development of novel traits.


Assuntos
Sistemas CRISPR-Cas , Glycine max/genética , Tricomas/genética , Alelos , Cromossomos de Plantas/genética , Edição de Genes , Genes de Plantas , Melhoramento Vegetal , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento , Tricomas/crescimento & desenvolvimento
4.
PLoS One ; 14(3): e0213284, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30845253

RESUMO

International environmental treaties are the key means by which states overcome collective action problems and make specific commitments to address environmental issues. However, systematically assessing states' influence in promoting global environmental protection has proven difficult. Analyzing newly compiled data with a purpose-built statistical model, we provide a novel measurement of state influence within the scope of environmental politics and find strong influences among states and treaties. Specifically, we report evidence that states are less likely to ratify when states within their region ratify, and results suggesting that countries positively influence other countries at similar levels of economic development. By examining several prominent treaties, we illustrate the complex nature of influence: a single act of ratification can dramatically reshape global environmental politics. More generally, our findings and approach provide an innovative means to understand the evolution and complexity of international environmental protection.


Assuntos
Conservação dos Recursos Naturais/legislação & jurisprudência , Saúde Global , Cooperação Internacional , Política , Países em Desenvolvimento , Humanos
5.
Plant Genome ; 12(3): 1-13, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-33016589

RESUMO

CORE IDEAS: 'Fiskeby III' harbors a combination of abiotic stress traits, including iron deficiency chlorosis (IDC) tolerance. An IDC quantitative trait locus on chromosome Gm05 was identified in genome-wide association studies and biparental populations. Fine-mapping resolved a 137-kb interval containing strong candidate genes. Iron deficiency chlorosis (IDC) is an important nutrient stress for soybean [Glycine max (L.) Merr.] grown in high-pH soils. Despite numerous agronomic attempts to alleviate IDC, genetic tolerance remains the most effective preventative measure against symptoms. In this study, two association mapping populations and a biparental mapping population were used for genetic mapping of IDC tolerance. Quantitative trait loci (QTLs) were identified on chromosomes Gm03, Gm05, and Gm06. Heterogenous inbred families were developed to fine-map the Gm05 QTL, which was uniquely supported in all three mapping populations. Fine-mapping resulted in a QTL with an interval size of 137 kb on the end of the short arm of Gm05, which produced up to a 1.5-point reduction in IDC severity on a 1 to 9 scale in near isogenic lines.


Assuntos
Glycine max/genética , Deficiências de Ferro , Doenças das Plantas , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas
7.
Plant Cell Environ ; 41(6): 1427-1437, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29498070

RESUMO

The photosynthetic, optical, and morphological characteristics of a chlorophyll-deficient (Chl-deficient) "yellow" soybean mutant (MinnGold) were examined in comparison with 2 green varieties (MN0095 and Eiko). Despite the large difference in Chl content, similar leaf photosynthesis rates were maintained in the Chl-deficient mutant by offsetting the reduced absorption of red photons by a small increase in photochemical efficiency and lower non-photochemical quenching. When grown in the field, at full canopy cover, the mutants reflected a significantly larger proportion of incoming shortwave radiation, but the total canopy light absorption was only slightly reduced, most likely due to a deeper penetration of light into the canopy space. As a consequence, canopy-scale gross primary production and ecosystem respiration were comparable between the Chl-deficient mutant and the green variety. However, total biomass production was lower in the mutant, which indicates that processes other than steady state photosynthesis caused a reduction in biomass accumulation over time. Analysis of non-photochemical quenching relaxation and gas exchange in Chl-deficient and green leaves after transitions from high to low light conditions suggested that dynamic photosynthesis might be responsible for the reduced biomass production in the Chl-deficient mutant under field conditions.


Assuntos
Clorofila/deficiência , Glycine max/genética , Glycine max/fisiologia , Mutação/genética , Fotossíntese , Folhas de Planta/fisiologia , Biomassa , Dióxido de Carbono/metabolismo , Oxigênio/metabolismo , Fótons , Complexo de Proteína do Fotossistema II/metabolismo , Transpiração Vegetal , Glycine max/crescimento & desenvolvimento , Fatores de Tempo
8.
PLoS One ; 13(1): e0190244, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29293583

RESUMO

Since 1976, the United States has seen over 1,400 judicial executions, and these have been highly concentrated in only a few states and counties. The number of executions across counties appears to fit a stretched distribution. These distributions are typically reflective of self-reinforcing processes where the probability of observing an event increases for each previous event. To examine these processes, we employ two-pronged empirical strategy. First, we utilize bootstrapped Kolmogorov-Smirnov tests to determine whether the pattern of executions reflect a stretched distribution, and confirm that they do. Second, we test for event-dependence using the Conditional Frailty Model. Our tests estimate the monthly hazard of an execution in a given county, accounting for the number of previous executions, homicides, poverty, and population demographics. Controlling for other factors, we find that the number of prior executions in a county increases the probability of the next execution and accelerates its timing. Once a jurisdiction goes down a given path, the path becomes self-reinforcing, causing the counties to separate out into those never executing (the vast majority of counties) and those which use the punishment frequently. This finding is of great legal and normative concern, and ultimately, may not be consistent with the equal protection clause of the U.S. Constitution.


Assuntos
Pena de Morte , Homicídio , Humanos , Modelos Teóricos , Probabilidade , Estados Unidos
10.
Plant Biotechnol J ; 16(6): 1125-1137, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29087011

RESUMO

Processing of double-stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing requires the combined activity of a functionally diverse group of molecular components. However, in most of the plant species, there are insufficient mutant resources to functionally characterize each encoding gene. Here, mutations in loci encoding protein machinery involved in small RNA processing in soya bean and Medicago truncatula were generated using the CRISPR/Cas9 and TAL-effector nuclease (TALEN) mutagenesis platforms. An efficient CRISPR/Cas9 reagent was used to create a bi-allelic double mutant for the two soya bean paralogous Double-stranded RNA-binding2 (GmDrb2a and GmDrb2b) genes. These mutations, along with a CRISPR/Cas9-generated mutation of the M. truncatula Hua enhancer1 (MtHen1) gene, were determined to be germ-line transmissible. Furthermore, TALENs were used to generate a mutation within the soya bean Dicer-like2 gene. CRISPR/Cas9 mutagenesis of the soya bean Dicer-like3 gene and the GmHen1a gene was observed in the T0 generation, but these mutations failed to transmit to the T1 generation. The irregular transmission of induced mutations and the corresponding transgenes was investigated by whole-genome sequencing to reveal a spectrum of non-germ-line-targeted mutations and multiple transgene insertion events. Finally, a suite of combinatorial mutant plants were generated by combining the previously reported Gmdcl1a, Gmdcl1b and Gmdcl4b mutants with the Gmdrb2ab double mutant. Altogether, this study demonstrates the synergistic use of different genome engineering platforms to generate a collection of useful mutant plant lines for future study of small RNA processing in legume crops.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Glycine max/genética , Medicago truncatula/genética , Proteínas de Ligação a RNA/genética , RNA/metabolismo , Sequência de Bases , Sistemas CRISPR-Cas , Medicago truncatula/metabolismo , Mutagênese Sítio-Dirigida , Glycine max/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição
11.
G3 (Bethesda) ; 7(4): 1215-1223, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28235823

RESUMO

Mutagenesis is a useful tool in many crop species to induce heritable genetic variability for trait improvement and gene discovery. In this study, forward screening of a soybean fast neutron (FN) mutant population identified an individual that produced seed with nearly twice the amount of sucrose (8.1% on dry matter basis) and less than half the amount of oil (8.5% on dry matter basis) as compared to wild type. Bulked segregant analysis (BSA), comparative genomic hybridization, and genome resequencing were used to associate the seed composition phenotype with a reciprocal translocation between chromosomes 8 and 13. In a backcross population, the translocation perfectly cosegregated with the seed composition phenotype and exhibited non-Mendelian segregation patterns. We hypothesize that the translocation is responsible for the altered seed composition by disrupting a ß-ketoacyl-[acyl carrier protein] synthase 1 (KASI) ortholog. KASI is a core fatty acid synthesis enzyme that is involved in the conversion of sucrose into oil in developing seeds. This finding may lead to new research directions for developing soybean cultivars with modified carbohydrate and oil seed composition.


Assuntos
Cromossomos de Plantas/genética , Glycine max/genética , Proteínas de Plantas/genética , Sementes/genética , Homologia de Sequência do Ácido Nucleico , Óleo de Soja/metabolismo , Sacarose/metabolismo , Translocação Genética , Mapeamento Cromossômico , Genes de Plantas , Heterozigoto , Homozigoto , Mutação/genética , Fenótipo , Reprodutibilidade dos Testes
12.
Theor Appl Genet ; 129(9): 1725-38, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27282876

RESUMO

KEY MESSAGE: Three adjacent and distinct sequence rearrangements were identified at a NAP1 locus in a soybean mutant. Genetic dissection and validation revealed the function of this gene in soybean trichome development. A soybean (Glycine max (L.) Merr.) gnarled trichome mutant, exhibiting stunted trichomes compared to wild-type, was identified in a fast neutron mutant population. Genetic mapping using whole genome sequencing-based bulked segregant analysis identified a 26.6 megabase interval on chromosome 20 that co-segregated with the phenotype. Comparative genomic hybridization analysis of the mutant indicated that the chromosome 20 interval included a small structural variant within the coding region of a soybean ortholog (Glyma.20G019300) of Arabidopsis Nck-Associated Protein 1 (NAP1), a regulator of actin nucleation during trichome morphogenesis. Sequence analysis of the candidate allele revealed multiple rearrangements within the coding region, including two deletions (approximately 1-2 kb each), a translocation, and an inversion. Further analyses revealed that the mutant allele perfectly co-segregated with the phenotype, and a wild-type soybean NAP1 transgene functionally complemented an Arabidopsis nap1 mutant. In addition, mapping and exon sequencing of NAP1 in a spontaneous soybean gnarled trichome mutant (T31) identified a frame shift mutation resulting in a truncation of the coding region. These data indicate that the soybean NAP1 gene is essential for proper trichome development and show the utility of the soybean fast neutron population for forward genetic approaches for identifying genes.


Assuntos
Glycine max/genética , Proteínas de Plantas/genética , Tricomas/crescimento & desenvolvimento , Alelos , Arabidopsis/genética , Mapeamento Cromossômico , Hibridização Genômica Comparativa , Nêutrons Rápidos , Genes de Plantas , Genótipo , Fenótipo , Plantas Geneticamente Modificadas/genética , RNA de Plantas/genética , Análise de Sequência de RNA , Deleção de Sequência , Glycine max/crescimento & desenvolvimento
13.
BMC Biotechnol ; 16(1): 41, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27176220

RESUMO

BACKGROUND: The safety of mutagenized and genetically transformed plants remains a subject of scrutiny. Data gathered and communicated on the phenotypic and molecular variation induced by gene transfer technologies will provide a scientific-based means to rationally address such concerns. In this study, genomic structural variation (e.g. large deletions and duplications) and single nucleotide polymorphism rates were assessed among a sample of soybean cultivars, fast neutron-derived mutants, and five genetically transformed plants developed through Agrobacterium based transformation methods. RESULTS: On average, the number of genes affected by structural variations in transgenic plants was one order of magnitude less than that of fast neutron mutants and two orders of magnitude less than the rates observed between cultivars. Structural variants in transgenic plants, while rare, occurred adjacent to the transgenes, and at unlinked loci on different chromosomes. DNA repair junctions at both transgenic and unlinked sites were consistent with sequence microhomology across breakpoints. The single nucleotide substitution rates were modest in both fast neutron and transformed plants, exhibiting fewer than 100 substitutions genome-wide, while inter-cultivar comparisons identified over one-million single nucleotide polymorphisms. CONCLUSIONS: Overall, these patterns provide a fresh perspective on the genomic variation associated with high-energy induced mutagenesis and genetically transformed plants. The genetic transformation process infrequently results in novel genetic variation and these rare events are analogous to genetic variants occurring spontaneously, already present in the existing germplasm, or induced through other types of mutagenesis. It remains unclear how broadly these results can be applied to other crops or transformation methods.


Assuntos
Reparo do DNA/genética , Variação Genética/genética , Genoma de Planta/genética , Glycine max/genética , Mutação/genética , Plantas Geneticamente Modificadas/genética , Dano ao DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Engenharia Genética/métodos
14.
Curr Protoc Plant Biol ; 1(2): 307-327, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30775866

RESUMO

Genetic bottlenecks during domestication and modern breeding limited the genetic diversity of soybean (Glycine max (L.) Merr.). Therefore, expanding and diversifying soybean genetic resources is a major priority for the research community. These resources, consisting of natural and induced genetic variants, are valuable tools for improving soybean and furthering soybean biological knowledge. During the twentieth century, researchers gathered a wealth of genetic variation in the forms of landraces, Glycine soja accessions, Glycine tertiary germplasm, and the U.S. Department of Agriculture (USDA) Type and Isoline Collections. During the twenty-first century, soybean researchers have added several new genetic and genomic resources. These include the reference genome sequence, genotype data for the USDA soybean germplasm collection, next-generation mapping populations, new irradiation and transposon-based mutagenesis populations, and designer nuclease platforms for genome engineering. This paper briefly surveys the publicly accessible soybean genetic resources currently available or in development and provides recommendations for developing such genetic resources in the future. © 2016 by John Wiley & Sons, Inc.

15.
G3 (Bethesda) ; 6(2): 423-33, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26681515

RESUMO

Small nonprotein-coding microRNAs (miRNAs) are present in most eukaryotes and are central effectors of RNA silencing-mediated mechanisms for gene expression regulation. In plants, DICER-LIKE1 (DCL1) is the founding member of a highly conserved family of RNase III-like endonucleases that function as core machinery proteins to process hairpin-like precursor transcripts into mature miRNAs, small regulatory RNAs, 21-22 nucleotides in length. Zinc finger nucleases (ZFNs) were used to generate single and double-mutants of putative soybean DCL1 homologs, DCL1a and DCL1b, to confirm their functional role(s) in the soybean miRNA pathway. Neither DCL1 single mutant, dcl1a or dcl1b plants, exhibited a pronounced morphological or molecular phenotype. However, the dcl1a/dcl1b double mutant expressed a strong morphological phenotype, characterized by reduced seed size and aborted seedling development, in addition to defective miRNA precursor transcript processing efficiency and deregulated miRNA target gene expression. Together, these findings indicate that the two soybean DCL1 paralogs, DCL1a and DCL1b, largely play functionally redundant roles in the miRNA pathway and are essential for normal plant development.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max/genética , MicroRNAs/genética , Mutação , Interferência de RNA , Estabilidade de RNA , RNA Mensageiro/genética , Ribonuclease III/genética , Alelos , Sequência de Bases , Análise por Conglomerados , Perfilação da Expressão Gênica , MicroRNAs/metabolismo , Mutagênese Sítio-Dirigida , Fenótipo , Ligação Proteica , RNA Mensageiro/metabolismo , Ribonucleases/metabolismo , Dedos de Zinco
16.
G3 (Bethesda) ; 5(1): 123-31, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25452420

RESUMO

The soybean [Glycine max (L.) Merr.] chlorophyll-deficient line MinnGold is a spontaneous mutant characterized by yellow foliage. Map-based cloning and transgenic complementation revealed that the mutant phenotype is caused by a nonsynonymous nucleotide substitution in the third exon of a Mg-chelatase subunit gene (ChlI1a) on chromosome 13. This gene was selected as a candidate for a different yellow foliage mutant, T219H (Y11y11), that had been previously mapped to chromosome 13. Although the phenotypes of MinnGold and T219H are clearly distinct, sequencing of ChlI1a in T219H identified a different nonsynonymous mutation in the third exon, only six base pairs from the MinnGold mutation. This information, along with previously published allelic tests, were used to identify and clone a third yellow foliage mutation, CD-5, which was previously mapped to chromosome 15. This mutation was identified in the ChlI1b gene, a paralog of ChlI1a. Sequencing of the ChlI1b allele in CD-5 identified a nonsynonymous substitution in the third exon that confers an identical amino acid change as the T219H substitution at ChlI1a. Protein sequence alignments of the two Mg-chelatase subunits indicated that the sites of amino acid modification in MinnGold, T219H, and CD-5 are highly conserved among photosynthetic species. These results suggest that amino acid alterations in this critical domain may create competitive inhibitory interactions between the mutant and wild-type ChlI1a and ChlI1b proteins.


Assuntos
Clorofila/deficiência , Glycine max/genética , Liases/genética , Sequência de Aminoácidos , Mutação , Folhas de Planta , Subunidades Proteicas/genética
17.
Genetics ; 198(3): 967-81, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25213171

RESUMO

Fast neutron radiation has been used as a mutagen to develop extensive mutant collections. However, the genome-wide structural consequences of fast neutron radiation are not well understood. Here, we examine the genome-wide structural variants observed among 264 soybean [Glycine max (L.) Merrill] plants sampled from a large fast neutron-mutagenized population. While deletion rates were similar to previous reports, surprisingly high rates of segmental duplication were also found throughout the genome. Duplication coverage extended across entire chromosomes and often prevailed at chromosome ends. High-throughput resequencing analysis of selected mutants resolved specific chromosomal events, including the rearrangement junctions for a large deletion, a tandem duplication, and a translocation. Genetic mapping associated a large deletion on chromosome 10 with a quantitative change in seed composition for one mutant. A tandem duplication event, located on chromosome 17 in a second mutant, was found to cosegregate with a short petiole mutant phenotype, and thus may serve as an example of a morphological change attributable to a DNA copy number gain. Overall, this study provides insight into the resilience of the soybean genome, the patterns of structural variation resulting from fast neutron mutagenesis, and the utility of fast neutron-irradiated mutants as a source of novel genetic losses and gains.


Assuntos
Nêutrons Rápidos , Genoma de Planta , Glycine max/genética , Duplicações Segmentares Genômicas/genética , Segregação de Cromossomos/genética , Cromossomos de Plantas/genética , Hibridização Genômica Comparativa , Dosagem de Genes , Genes de Plantas , Variação Estrutural do Genoma , Fenótipo , Reprodutibilidade dos Testes , Sementes/genética , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...