Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 10(13): 6785-6793, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32724551

RESUMO

We surveyed mitochondrial, autosomal, and Z chromosome diversity within and between the Copperback Quail-thrush Cinclosoma clarum and Chestnut Quail-thrush C. castanotum, which together span the arid and semi-arid zones of southern Australia, and primarily from specimens held in museum collections. We affirm the recent taxonomic separation of the two species and then focus on diversity within the more widespread of the two species, C. clarum. To guide further study of the system and what it offers to understanding the genomics of the differentiation and speciation processes, we develop and present a hypothesis to explain mitonuclear discordance that emerged in ourdata. Following a period of historical allopatry, secondary contact has resulted in an eastern mitochondrial genome replacing the western mitochondrial genome in western populations. This is predicted under a population-level invasion in the opposite direction, that of the western population invading the range of the eastern one. Mitochondrial captures can be driven by neutral, demographic processes, or adaptive mechanisms, and we favor the hypothesized capture being driven by neutral means. We cannot fully reject the adaptive process but suggest how these alternatives may be further tested. We acknowledge an alternative hypothesis, which finds some support in phenotypic data published elsewhere, namely that outcomes of secondary contact have been more complex than our current genomic data suggest. Discriminating and reconciling these two alternative hypotheses, which may not be mutually exclusive, could be tested with closer sampling at levels of population, individual, and nucleotide than has so far been possible. This would be further aided by knowledge of the genetic basis to phenotypic variation described elsewhere.

2.
PeerJ ; 7: e6180, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30643698

RESUMO

The demand for exotic non-domesticated animals kept as pets in the United States of America (USA) is increasing the exportation rates of these species from their native ranges. Often, illegal harvesting of these species is used to boost captive-bred numbers and meet this demand. One such species, the sugar glider (Petaurus breviceps), endemic to Australia and New Guinea is a popular domestic pet due to its small size and "cute" demeanour. Despite a legal avenue for trade existing in Indonesia, concerns have been raised that sugar gliders may be entering the USA from other parts of their native range where exportation is prohibited such as Australia, Papua New Guinea and the surrounding Indonesian islands. We compared previously published DNA sequences from across the native range of sugar gliders with samples collected from domestically kept sugar gliders within the USA to determine provenance and gene flow between source and introduced populations. Here we show that as predicted, the USA sugar glider population originates from West Papua, Indonesia with no illegal harvesting from other native areas such as Papua New Guinea or Australia evident in the samples tested within this study.

3.
Ecol Evol ; 8(1): 732-743, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321909

RESUMO

The ability to detect the incursion of an invasive species or destroy the last individuals during an eradication program are some of the most difficult aspects of invasive species management. The presence of foxes in Tasmania is a contentious issue with recent structured monitoring efforts, involving collection of carnivore scats and testing for fox DNA, failing to detect any evidence of foxes. Understanding the likelihood that monitoring efforts would detect fox presence, given at least one is present, is therefore critical for understanding the role of scat monitoring for informing the response to an incursion. We undertook trials to estimate the probability of fox scat detection through monitoring by scat-detector dogs and person searches and used this information to critically evaluate the power of scat monitoring efforts for detecting foxes in the Tasmanian landscape. The probability of detecting a single scat present in a 1-km2 survey unit was highest for scat-detector dogs searches (0.053) compared with person searches (x¯â‰…0.015) for each 10 km of search effort. Simulation of the power of recent scat monitoring efforts undertaken in Tasmania from 2011 to 2015 suggested that single foxes would have to be present in at least 20 different locations or fox breeding groups present in at least six different locations, in order to be detected with a high level of confidence (>0.80). We have shown that highly structured detection trials can provide managers with the quantitative tools needed to make judgments about the power of large-scale scat monitoring programs. Results suggest that a fox population, if present in Tasmania, could remain undetected by a large-scale, structured scat monitoring program. Therefore, it is likely that other forms of surveillance, in conjunction with scat monitoring, will be necessary to demonstrate that foxes are absent from Tasmania with high confidence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...