Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
BioTech (Basel) ; 13(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38247731

RESUMO

Gene therapy holds promise as a life-changing option for individuals with genetic variants that give rise to disease. FDA-approved gene therapies for Spinal Muscular Atrophy (SMA), cerebral adrenoleukodystrophy, ß-Thalassemia, hemophilia A/B, retinal dystrophy, and Duchenne Muscular Dystrophy have generated buzz around the ability to change the course of genetic syndromes. However, this excitement risks over-expansion into areas of genetic disease that may not fit the current state of gene therapy. While in situ (targeted to an area) and ex vivo (removal of cells, delivery, and administration of cells) approaches show promise, they have a limited target ability. Broader in vivo gene therapy trials have shown various continued challenges, including immune response, use of immune suppressants correlating to secondary infections, unknown outcomes of overexpression, and challenges in driving tissue-specific corrections. Viral delivery systems can be associated with adverse outcomes such as hepatotoxicity and lethality if uncontrolled. In some cases, these risks are far outweighed by the potentially lethal syndromes for which these systems are being developed. Therefore, it is critical to evaluate the field of genetic diseases to perform cost-benefit analyses for gene therapy. In this work, we present the current state while setting forth tools and resources to guide informed directions to avoid foreseeable issues in gene therapy that could prevent the field from continued success.

3.
Am J Med Genet A ; 188(2): 556-568, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34726335

RESUMO

Predicting genotype-to-phenotype correlations from genomic variants has been challenging, particularly for genes that have a complex balance of dominant and recessive inheritance for phenotypes. Variants in NMDA receptor components GRIN1, GRIN2A, and GRIN2B cause a myriad of dominant disease phenotypes, with the most common being epilepsy and autism spectrum disorder. Starting from the analysis of a variant of uncertain significance (VUS, GRIN2A G760S), we realized the need for tools to map dominant variants for the components of the NMDA receptor. Some variants within GRIN1, GRIN2A, and GRIN2B exert dominant epilepsy and developmental delay, yet other amino acid variants are conserved and predicted to alter protein function but do not have dominant phenotypes. Common variant annotation tools are not powered to determine pathogenic dominant outcomes. To address this gap, we integrated sequence and structural analyses for GRIN1, GRIN2A, and GRIN2B. Using this approach, we determined that paralog homology mapping and topology can segregate dominant variants, with an elevation of intermolecular contacts between the subunits. Furthermore, demonstrating the general utility of our methodology, we show that 25 VUS within ClinVar also reach a dominant variant annotation, including the GRIN2A G760S variant. Our work suggests paralog homology and protein topology as a powerful strategy within the receptor complex to resolve dominant genetic variants relative to variants that would fit a recessive inheritance, requiring two damaging variants. These strategies should be tested in additional dominant genetic disorders to determine the broader utility.


Assuntos
Transtorno do Espectro Autista , Epilepsia , Epilepsia/genética , Humanos , N-Metilaspartato/genética , Fenótipo , Receptores de N-Metil-D-Aspartato/genética
4.
J Neurodev Disord ; 13(1): 30, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429070

RESUMO

BACKGROUND: Prenatal exposure to air pollutants is associated with increased risk for neurodevelopmental and neurodegenerative disorders. However, few studies have identified transcriptional changes related to air pollutant exposure. METHODS: RNA sequencing was used to examine transcriptomic changes in blood and cerebral cortex of three male and three female mouse neonates prenatally exposed to traffic-related nano-sized particulate matter (nPM) compared to three male and three female mouse neonates prenatally exposed to control filter air. RESULTS: We identified 19 nPM-associated differentially expressed genes (nPM-DEGs) in blood and 124 nPM-DEGs in cerebral cortex. The cerebral cortex transcriptional responses to nPM suggested neuroinflammation involvement, including CREB1, BDNF, and IFNγ genes. Both blood and brain tissues showed nPM transcriptional changes related to DNA damage, oxidative stress, and immune responses. Three blood nPM-DEGs showed a canonical correlation of 0.98 with 14 nPM-DEGS in the cerebral cortex, suggesting a convergence of gene expression changes in blood and cerebral cortex. Exploratory sex-stratified analyses suggested a higher number of nPM-DEGs in female cerebral cortex than male cerebral cortex. The sex-stratified analyses identified 2 nPM-DEGs (Rgl2 and Gm37534) shared between blood and cerebral cortex in a sex-dependent manner. CONCLUSIONS: Our findings suggest that prenatal nPM exposure induces transcriptional changes in the cerebral cortex, some of which are also observed in blood. Further research is needed to replicate nPM-induced transcriptional changes with additional biologically relevant time points for brain development.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Animais , Córtex Cerebral , Feminino , Masculino , Camundongos , Material Particulado/toxicidade , Gravidez , Transcriptoma
5.
Genes (Basel) ; 12(4)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806076

RESUMO

Ornithine decarboxylase 1 (ODC1 gene) has been linked through gain-of-function variants to a rare disease featuring developmental delay, alopecia, macrocephaly, and structural brain anomalies. ODC1 has been linked to additional diseases like cancer, with growing evidence for neurological contributions to schizophrenia, mood disorders, anxiety, epilepsy, learning, and suicidal behavior. The evidence of ODC1 connection to neural disorders highlights the need for a systematic analysis of ODC1 genotype-to-phenotype associations. An analysis of variants from ClinVar, Geno2MP, TOPMed, gnomAD, and COSMIC revealed an intellectual disability and seizure connected loss-of-function variant, ODC G84R (rs138359527, NC_000002.12:g.10444500C > T). The missense variant is found in ~1% of South Asian individuals and results in 2.5-fold decrease in enzyme function. Expression quantitative trait loci (eQTLs) reveal multiple functionally annotated, non-coding variants regulating ODC1 that associate with psychiatric/neurological phenotypes. Further dissection of RNA-Seq during fetal brain development and within cerebral organoids showed an association of ODC1 expression with cell proliferation of neural progenitor cells, suggesting gain-of-function variants with neural over-proliferation and loss-of-function variants with neural depletion. The linkage from the expression data of ODC1 in early neural progenitor proliferation to phenotypes of neurodevelopmental delay and to the connection of polyamine metabolites in brain function establish ODC1 as a bona fide neurodevelopmental disorder gene.


Assuntos
Encéfalo/patologia , Transportadores de Ácidos Dicarboxílicos/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Células-Tronco Neurais/patologia , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Polimorfismo de Nucleotídeo Único , Encéfalo/metabolismo , Proliferação de Células , Humanos , Células-Tronco Neurais/metabolismo , Transtornos do Neurodesenvolvimento/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-33050454

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by disruptions in social communication and behavioral flexibility. Both genetic and environmental factors contribute to ASD risk. Epidemiologic studies indicate that roadway vehicle exhaust and in utero exposure to diesel particulate matter (DPM) are associated with ASD. Using the Comparative Toxicogenomics Database (CTD), we identified genes connected to DPM exposure and ASD, extracted the known enhancers/promoters of the identified genes, and integrated this with Assay for Transposase Accessible Chromatin (ATAC-seq) data from DPM-exposed human neural progenitor cells. Enhancer/promoter elements with significantly different chromosome accessibility revealed enriched DNA sequence motifs with transcription factor binding sites for EGR1. Variant extraction for linkage disequilibrium blocks of these regions followed by analysis through Genome Wide Association Studies (GWAS) revealed multiple neurological trait associations including exploratory eye movement and brain volume measurement. This approach highlights the effects of pollution on the regulatory regions of genes implicated in ASD by genetic studies, indicating convergence of genetic and environmental factors on molecular networks that contribute to ASD. Integration of publicly available data from the CTD, cell culture exposure studies, and phenotypic genetics synergize extensive evidence of chemical exposures on gene regulation for altered brain development.


Assuntos
Transtorno do Espectro Autista , Poluentes Ambientais , Epigênese Genética , Material Particulado , Toxicogenética , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/genética , Poluentes Ambientais/toxicidade , Epigênese Genética/efeitos dos fármacos , Feminino , Estudo de Associação Genômica Ampla , Humanos , Exposição Materna , Material Particulado/toxicidade
7.
Transl Psychiatry ; 10(1): 218, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636363

RESUMO

Gestational exposure to air pollution increases the risk of autism spectrum disorder and cognitive impairments with unresolved molecular mechanisms. This study exposed C57BL/6J mice throughout gestation to urban-derived nanosized particulate matter (nPM). Young adult male and female offspring were studied for behavioral and metabolic changes using forced swim test, fat gain, glucose tolerance, and hippocampal transcriptome. Gestational nPM exposure caused increased depressive behaviors, decreased neurogenesis in the dentate gyrus, and increased glucose tolerance in adult male offspring. Both sexes gained fat and body weight. Gestational nPM exposure induced 29 differentially expressed genes (DEGs) in adult hippocampus related to cytokine production, IL17a signaling, and dopamine degradation in both sexes. Stratification by sex showed twofold more DEGs in males than females (69 vs 37), as well as male-specific enrichment of DEGs mediating serotonin signaling, endocytosis, Gαi, and cAMP signaling. Gene co-expression analysis (WCGNA) identified a module of 43 genes with divergent responses to nPM between the sexes. Chronic changes in 14 DEGs (e.g., microRNA9-1) were associated with depressive behaviors, adiposity and glucose intolerance. These genes enriched neuroimmune pathways such as HMGB1 and TLR4. Based on cerebral cortex transcriptome data of neonates, we traced the initial nPM responses of HMGB1 pathway. In vitro, mixed glia responded to 24 h nPM with lower HMGB1 protein and increased proinflammatory cytokines. This response was ameliorated by TLR4 knockdown. In sum, we identified transcriptional changes that could be associated with air pollution-mediated behavioral and phenotypic changes. These identified genes merit further mechanistic studies for therapeutic intervention development.


Assuntos
Poluição do Ar , Transtorno do Espectro Autista , Poluição do Ar/efeitos adversos , Animais , Feminino , Hipocampo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transcriptoma
8.
Dev Neurosci ; 42(5-6): 195-207, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33657557

RESUMO

Autism spectrum disorder (ASD) manifests early in childhood. While genetic variants increase risk for ASD, a growing body of literature has established that in utero chemical exposures also contribute to ASD risk. These chemicals include air-based pollutants like diesel particulate matter (DPM). A combination of single-cell and direct transcriptomics of DPM-exposed human-induced pluripotent stem cell-derived cerebral organoids revealed toxicogenomic effects of DPM exposure during fetal brain development. Direct transcriptomics, sequencing RNA bases via Nanopore, revealed that cerebral organoids contain extensive RNA modifications, with DPM-altering cytosine methylation in oxidative mitochondrial transcripts expressed in outer radial glia cells. Single-cell transcriptomics further confirmed an oxidative phosphorylation change in cell groups such as outer radial glia upon DPM exposure. This approach highlights how DPM exposure perturbs normal mitochondrial function and cellular respiration during early brain development, which may contribute to developmental disorders like ASD by altering neurodevelopment.


Assuntos
Epigênese Genética/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Material Particulado/toxicidade , Células-Tronco Pluripotentes/efeitos dos fármacos , Emissões de Veículos/toxicidade , Transtorno do Espectro Autista/etiologia , Encéfalo/efeitos dos fármacos , Feminino , Humanos , Exposição Materna/efeitos adversos , Organoides , Análise de Sequência de RNA
9.
Front Genet ; 10: 970, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681417

RESUMO

Most of the genetic risk for autism spectrum disorder (ASD) is inherited as common genetic variants, although some rare mutations have been identified in individuals with ASD. Common genetic variants are most parsimoniously identified by genome wide association studies. Genome wide association studies have identified several genetic loci with genome wide association with ASD. However, genome wide association studies only identify regions of the genome associated with phenotypic traits. Identification of the functional elements requires additional experimental evidence. Here, we demonstrate that a genome wide association study locus for ASD on chromosome 20p12.1, rs4141463, implicates a noncoding RNA as a functional element. Although rs4141463 lies within an intron of the protein-coding MACROD2 (MACRO domain containing 2) gene, expression of MACROD2 is neither altered in postmortem temporal cortex of individuals with ASD nor correlated with rs4141463 genotype. Our bioinformatics approaches revealed a noncoding RNA transcript near the autism susceptibility signal, RPS10P2-AS1 (ribosomal protein S10 pseudogene 2 anti-sense 1). In a panel of 15 human tissues, RPS10P2-AS1 was expressed at higher levels than the protein-coding MACROD2 in both fetal temporal cortex and adult peripheral blood. In postmortem temporal cortex, expression of RPS10P2-AS1 was increased 7-fold in individuals with ASD (P = 0.02) and increased 8-fold in individuals with the ASD-associated rs4141463 genotype (P = 0.01). Further, RPS10P2-AS1 expression was increased in human neural progenitor cells exposed to model air pollutants, indicating that both genetic and environmental factors that contribute to ASD increased RPS10P2-AS1 expression. Overexpression of RPS10P2-AS1 in human neural progenitor cells indicated substantial changes in neuronal gene expression. These data indicate that genome-wide significant associations with ASD implicate long noncoding RNAs. Because long noncoding RNAs are more abundant in human brain than protein-coding RNAs, this class of molecules is likely to contribute to ASD risk.

10.
Proc Natl Acad Sci U S A ; 114(50): E10717-E10725, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29180410

RESUMO

The receptor-like tyrosine kinase (Ryk), a Wnt receptor, is important for cell fate determination during corticogenesis. During neuronal differentiation, the Ryk intracellular domain (ICD) is cleaved. Cleavage of Ryk and nuclear translocation of Ryk-ICD are required for neuronal differentiation. However, the mechanism of translocation and how it regulates neuronal differentiation remain unclear. Here, we identified Smek1 and Smek2 as Ryk-ICD partners that regulate its nuclear localization and function together with Ryk-ICD in the nucleus through chromatin recruitment and gene transcription regulation. Smek1/2 double knockout mice displayed pronounced defects in the production of cortical neurons, especially interneurons, while the neural stem cell population increased. In addition, both Smek and Ryk-ICD bound to the Dlx1/2 intergenic regulator element and were involved in its transcriptional regulation. These findings demonstrate a mechanism of the Ryk signaling pathway in which Smek1/2 and Ryk-ICD work together to mediate neural cell fate during corticogenesis.


Assuntos
Chaperonas Moleculares/metabolismo , Neurogênese/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Coenzimas/metabolismo , Células HEK293 , Humanos , Camundongos
11.
Dev Neurosci ; 38(5): 375-383, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28030860

RESUMO

The long noncoding RNA MSNP1AS (moesin pseudogene 1, antisense) is a functional element that was previously associated with autism spectrum disorder (ASD) with genome-wide significance. Expression of MSNP1AS was increased 12-fold in the cerebral cortex of individuals with ASD and 22-fold in individuals with a genome-wide significantly associated ASD genetic marker on chromosome 5p14.1. Overexpression of MSNP1AS in human neuronal cells caused decreased expression of moesin protein, which is involved in neuronal process stability. In this study, we hypothesize that MSNP1AS knockdown impacts global transcriptome levels. We transfected the human neural progenitor cell line SK- N-SH with constructs that caused a 50% suppression of MSNP1AS expression. After 24 h, cells were harvested for total RNA isolation. Strand-specific RNA sequencing analysis indicated altered expression of 1,352 genes, including altered expression of 318 genes following correction for multiple comparisons. Expression of the OAS2 gene was increased >150-fold, a result that was validated by quantitative PCR. Gene ontology analysis of the 318 genes with altered expression following correction for multiple comparisons indicated that upregulated genes were significantly enriched for genes involved in immune response, and downregulated genes were significantly enriched for genes involved in chromatin remodeling. These data indicate multiple transcriptional and translational functions of MSNP1AS that impact ASD-relevant biological processes. Chromatin remodeling and immune response are biological processes implicated by genes with rare mutations associated with ASD. Our data suggest that the functional elements implicated by association of common genetic variants impact the same biological processes, suggesting a possible shared common molecular pathway of ASD.


Assuntos
Transtorno do Espectro Autista/genética , Inativação Gênica/fisiologia , Células-Tronco Neurais/metabolismo , RNA Longo não Codificante/genética , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Humanos , Mutação/genética , Células-Tronco Neurais/citologia
12.
Genes (Basel) ; 7(10)2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27690106

RESUMO

We previously identified the long noncoding RNA (lncRNA) MSNP1AS (moesin pseudogene 1, antisense) as a functional element revealed by genome wide significant association with autism spectrum disorder (ASD). MSNP1AS expression was increased in the postmortem cerebral cortex of individuals with ASD and particularly in individuals with the ASD-associated genetic markers on chromosome 5p14.1. Here, we mimicked the overexpression of MSNP1AS observed in postmortem ASD cerebral cortex in human neural progenitor cell lines to determine the impact on neurite complexity and gene expression. ReNcell CX and SK-N-SH were transfected with an overexpression vector containing full-length MSNP1AS. Neuronal complexity was determined by the number and length of neuronal processes. Gene expression was determined by strand-specific RNA sequencing. MSNP1AS overexpression decreased neurite number and neurite length in both human neural progenitor cell lines. RNA sequencing revealed changes in gene expression in proteins involved in two biological processes: protein synthesis and chromatin remodeling. These data indicate that overexpression of the ASD-associated lncRNA MSNP1AS alters the number and length of neuronal processes. The mechanisms by which MSNP1AS overexpression impacts neuronal differentiation may involve protein synthesis and chromatin structure. These same biological processes are also implicated by rare mutations associated with ASD, suggesting convergent mechanisms.

13.
Front Neurosci ; 9: 392, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26557050

RESUMO

Increasing evidence suggests that noncoding RNAs play key roles in cellular processes, particularly in the brain. The present study used RNA sequencing to identify the transcriptional landscape of two human neural progenitor cell lines, SK-N-SH and ReNcell CX, as they differentiate into human cortical projection neurons. Protein coding genes were found to account for 54.8 and 57.0% of expressed genes, respectively, and alignment of RNA sequencing reads revealed that only 25.5-28.1% mapped to exonic regions of the genome. Differential expression analysis in the two cell lines identified altered gene expression in both protein coding and noncoding RNAs as they undergo neural differentiation with 222 differentially expressed genes observed in SK-N-SH cells and 19 differentially expressed genes in ReNcell CX. Interestingly, genes showing differential expression in SK-N-SH cells are enriched in genes implicated in autism spectrum disorder, but not in gene sets related to cancer or Alzheimer's disease. Weighted gene co-expression network analysis (WGCNA) was used to detect modules of co-expressed protein coding and noncoding RNAs in SK-N-SH cells and found four modules to be associated with neural differentiation. These modules contain varying levels of noncoding RNAs ranging from 10.7 to 49.7% with gene ontology suggesting roles in numerous cellular processes important for differentiation. These results indicate that noncoding RNAs are highly expressed in human neural progenitor cells and likely hold key regulatory roles in gene networks underlying neural differentiation and neurodevelopmental disorders.

15.
Epidemiology ; 25(1): 44-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24240654

RESUMO

BACKGROUND: Independent studies report association of autism spectrum disorder with air pollution exposure and a functional promoter variant (rs1858830) in the MET receptor tyrosine kinase (MET) gene. Toxicological data find altered brain Met expression in mice after prenatal exposure to a model air pollutant. Our objective was to investigate whether air pollution exposure and MET rs1858830 genotype interact to alter the risk of autism spectrum disorder. METHODS: We studied 252 cases of autism spectrum disorder and 156 typically developing controls from the Childhood Autism Risk from Genetics and the Environment Study. Air pollution exposure was assigned for local traffic-related sources and regional sources (particulate matter, nitrogen dioxide, and ozone). MET genotype was determined by direct resequencing. RESULTS: Subjects with both MET rs1858830 CC genotype and high air pollutant exposures were at increased risk of autism spectrum disorder compared with subjects who had both the CG/GG genotypes and lower air pollutant exposures. There was evidence of multiplicative interaction between NO2 and MET CC genotype (P= 0.03). CONCLUSIONS: MET rs1858830 CC genotype and air pollutant exposure may interact to increase the risk of autism spectrum disorder.


Assuntos
Poluição do Ar/estatística & dados numéricos , Transtornos Globais do Desenvolvimento Infantil/genética , Interação Gene-Ambiente , Proteínas Proto-Oncogênicas c-met/genética , Estudos de Casos e Controles , Transtornos Globais do Desenvolvimento Infantil/epidemiologia , Pré-Escolar , Exposição Ambiental , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Modelos Logísticos , Masculino , Dióxido de Nitrogênio , Ozônio , Material Particulado , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Emissões de Veículos
16.
Int Rev Neurobiol ; 113: 35-59, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24290382

RESUMO

Accumulating evidence indicates that long noncoding RNAs (lncRNAs) contribute to autism spectrum disorder (ASD) risk. Although a few lncRNAs have long been recognized to have important functions, the vast majority of this class of molecules remains uncharacterized. Because lncRNAs are more abundant in human brain than protein-coding RNAs, it is likely that they contribute to brain disorders, including ASD. We review here the known functions of lncRNAs and the potential contributions of lncRNAs to ASD.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Predisposição Genética para Doença/genética , RNA Longo não Codificante/genética , Regulação da Expressão Gênica/genética , Humanos
17.
Mol Autism ; 4(1): 36, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24090431

RESUMO

New technologies enabling genome-wide interrogation have led to a large and rapidly growing number of autism spectrum disorder (ASD) candidate genes. Although encouraging, the volume and complexity of these data make it challenging for scientists, particularly non-geneticists, to comprehensively evaluate available evidence for individual genes. Described here is the Gene Scoring module within SFARI Gene 2.0 (https://gene.sfari.org/autdb/GS_Home.do), a platform developed to enable systematic community driven assessment of genetic evidence for individual genes with regard to ASD.

18.
Sci Transl Med ; 4(128): 128ra40, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22491950

RESUMO

People with autism spectrum disorder (ASD) are characterized by deficits in social interaction, language, and behavioral flexibility. Rare mutations and copy number variations have been identified in individuals with ASD, but in most patients, the causal variants remain unknown. A genome-wide association study (GWAS), designed to identify genes and pathways that contribute to ASD, indicated a genome-wide significant association of ASD with the single-nucleotide polymorphism (SNP) rs4307059 (P = 10⁻¹°), which is located in a gene-poor region of chromosome 5p14.1. We describe here a 3.9-kb noncoding RNA that is transcribed from the region of the chromosome 5p14.1 ASD GWAS association SNP. The noncoding RNA was encoded by the opposite (antisense) strand of moesin pseudogene 1 (MSNP1), and we therefore designated it as MSNP1AS (moesin pseudogene 1, antisense). Chromosome 5p14.1 MSNP1AS was 94% identical and antisense to the X chromosome transcript of MSN, which encodes a protein (moesin) that regulates neuronal architecture. Individuals who carry the ASD-associated rs4307059 T allele showed increased expression of MSNP1AS. The MSNP1AS noncoding RNA bound to MSN, was highly overexpressed (12.7-fold) in postmortem cerebral cortex of individuals with ASD, and could regulate levels of moesin protein in human cell lines. These data reveal a biologically functional element that may contribute to ASD risk.


Assuntos
Transtorno Autístico/genética , Proteínas dos Microfilamentos/genética , RNA Antissenso/genética , Northern Blotting , Western Blotting , Linhagem Celular , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Técnicas In Vitro , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
J Neurodev Disord ; 3(2): 101-12, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21484202

RESUMO

Autism spectrum disorder (ASD) is characterized by core deficits in social behavior, communication, and behavioral flexibility. Several lines of evidence indicate that oxytocin, signaling through its receptor (OXTR), is important in a wide range of social behaviors. In attempts to determine whether genetic variations in the oxytocin signaling system contribute to ASD susceptibility, seven recent reports indicated association of common genetic polymorphisms in the OXTR gene with ASD. Each involved relatively small sample sizes (57 to 436 families) and, where it was examined, failed to identify association of OXTR polymorphisms with measures of social behavior in individuals with ASD. We report genetic association analysis of 25 markers spanning the OXTR locus in 1,238 pedigrees including 2,333 individuals with ASD. Association of three markers previously implicated in ASD susceptibility, rs2268493 (P = 0.043), rs1042778 (P = 0.037), and rs7632287 (P = 0.016), was observed. Further, these genetic markers were associated with multiple core ASD phenotypes, including social domain dysfunction, measured by standardized instruments used to diagnose and describe ASD. The data suggest association of OXTR genetic polymorphisms with ASD, although the results should be interpreted with caution because none of the significant associations would survive appropriate correction for multiple comparisons. However, the current findings of association in a large independent cohort are consistent with previous results, and the biological plausibility of participation of the oxytocin signaling system in modulating social disruptions characteristic of ASD, suggest that functional polymorphisms of OXTR may contribute to ASD risk in a subset of families.

20.
Autism Res ; 4(1): 68-83, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21328570

RESUMO

Candidate risk genes for autism spectrum disorder (ASD) have been identified, but the challenge of determining their contribution to pathogenesis remains. We previously identified two ASD risk genes encoding the receptor tyrosine kinase MET and the urokinase plasminogen activator receptor (PLAUR), which is thought to modulate availability of the MET ligand. We also reported a role for Met signaling in cortical interneuron development in vitro and a reduction of these neurons in uPAR (mouse ortholog of PLAUR) null mice, suggesting that disruption of either gene impacts cortical development similarly. Here, we modify this conclusion, reporting that interneuron numbers are unchanged in the neocortex of Met(fx/fx) / Dlx5/6(cre) mice, in which Met is ablated from cells arising from the ventral telencephalon (VTel). Consistent with this, Met transcript is not detected in the VTel during interneuron genesis and migration; furthermore, during the postnatal period of interneuron maturation, Met is co-expressed in glutamatergic projection neurons, but not interneurons. Low levels of Met protein are expressed in the VTel at E12.5 and E14.5, likely reflecting the arrival of Met containing corticofugal axons. Met expression, however, is induced in E12.5 VTel cells after 2 days in vitro, perhaps underlying discrepancies between observations in vitro and in Met(fx/fx) / Dlx5/6(cre) mice. We suggest that, in vivo, Met impacts the development of cortical projection neurons, whereas uPAR influences interneuron maturation. An altered balance between excitation and inhibition has been postulated as a biological mechanism for ASD; this imbalance could arise from different risk genes differentially affecting either or both elements.


Assuntos
Córtex Cerebral/fisiopatologia , Transtornos Globais do Desenvolvimento Infantil/genética , Transtornos Globais do Desenvolvimento Infantil/fisiopatologia , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/fisiopatologia , Proteínas Proto-Oncogênicas c-met/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Alelos , Animais , Contagem de Células , Movimento Celular/genética , Córtex Cerebral/patologia , Criança , Transtornos Globais do Desenvolvimento Infantil/patologia , Expressão Gênica/genética , Estudos de Associação Genética , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos , Hibridização In Situ , Técnicas In Vitro , Interneurônios/patologia , Interneurônios/fisiologia , Malformações do Desenvolvimento Cortical/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos , Transdução de Sinais/genética , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...