Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys Rev (Melville) ; 5(2): 021308, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38912258

RESUMO

Originally developed more than 20 years ago, engineered heart tissue (EHT) has become an important tool in cardiovascular research for applications such as disease modeling and drug screening. Innovations in biomaterials, stem cell biology, and bioengineering, among other fields, have enabled EHT technologies to recapitulate many aspects of cardiac physiology and pathophysiology. While initial EHT designs were inspired by the isolated-trabecula culture system, current designs encompass a variety of formats, each of which have unique strengths and limitations. In this review, we describe the most common EHT formats, and then systematically evaluate each aspect of their design, emphasizing the rational selection of components for each application.

2.
J Clin Invest ; 134(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38226618

RESUMO

Titin (TTN) is one of the largest and most complex proteins expressed in humans, and truncation variants are the most prevalent genetic lesion identified in individuals with dilated cardiomyopathy (DCM) or other disorders of impaired cardiac contractility. Two reports in this issue of the JCI shed light on a potential mechanism involving truncated TTN sarcomere integration and the potential for disruption of sarcomere structural integrity. Kellermayer, Tordai, and colleagues confirmed the presence of truncated TTN protein in human DCM samples. McAfee and authors developed a patient-specific TTN antibody to study truncated TTN subcellular localization and to explore its functional consequences. A "poison peptide" mechanism emerges that inspires alternative therapeutic approaches while opening new lines for inquiry, such as the role of haploinsufficiency of full-length TTN protein, mechanisms explaining sarcomere dysfunction, and explanations for variable penetrance.


Assuntos
Cardiomiopatia Dilatada , Sarcômeros , Humanos , Conectina/genética , Conectina/metabolismo , Sarcômeros/metabolismo , Cardiomiopatia Dilatada/metabolismo , Penetrância , Mutação
3.
Artigo em Inglês | MEDLINE | ID: mdl-37830983

RESUMO

We seek to elucidate the precise nature of mechanical loading that precipitates conduction deficits in a concealed-phase model of arrhythmogenic cardiomyopathy (ACM). ACM is a progressive disorder often resulting from mutations in desmosomal proteins. Exercise has been shown to worsen disease progression and unmask arrhythmia vulnerability, yet the underlying pathomechanisms may depend on the type and intensity of exercise. Because exercise causes myriad changes to multiple inter-dependent hemodynamic parameters, it is difficult to isolate its effects to specific changes in mechanical load. Here, we use engineered heart tissues (EHTs) with iPSC-derived cardiomyocytes expressing R451G desmoplakin, an ACM-linked mutation, which results in a functionally null model of desmoplakin (DSP). We also use a novel bioreactor to independently perturb tissue strain at different time points during the cardiac cycle. We culture EHTs under three strain regimes: normal physiological shortening; increased diastolic stretch, simulating high preload; and isometric culture, simulating high afterload. DSPR451G EHTs that have been cultured isometrically undergo adaptation, with no change in action potential parameters, conduction velocity, or contractile function, a phenotype confirmed by global proteomic analysis. However, when DSPR451G EHTs are subjected to increased diastolic stretch, they exhibit concomitant reductions in conduction velocity and the expression of connexin-43. These effects are rescued by inhibition of both lysosome activity and ERK signaling. Our results indicate that the response of DSPR451G EHTs to mechanical stimuli depends on the strain and the timing of the applied stimulus, with increased diastolic stretch unmasking conduction deficits in a concealed-phase model of ACM.

4.
Tissue Eng Part C Methods ; 29(10): 459-468, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37450340

RESUMO

Decellularized porcine myocardium is commonly used as scaffolding for engineered heart tissues (EHTs). However, structural and mechanical heterogeneity in the myocardium complicate production of mechanically consistent tissues. In this study, we evaluate the porcine psoas major muscle (tenderloin) as an alternative scaffold material. Head-to-head comparison of decellularized tenderloin and ventricular scaffolds showed only minor differences in mean biomechanical characteristics, but tenderloin scaffolds were less variable and less dependent on the region of origin than ventricular samples. The active contractile behavior of EHTs made by seeding tenderloin versus ventricular scaffolds with human-induced pluripotent stem cell-derived cardiomyocytes was also comparable, with only minor differences observed. Collectively, the data reveal that the behavior of EHTs produced from decellularized porcine psoas muscle is almost identical to those made from porcine left ventricular myocardium, with the advantages of being more homogeneous, biomechanically consistent, and readily obtainable.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Suínos , Humanos , Animais , Alicerces Teciduais/química , Músculos Psoas , Miócitos Cardíacos , Miocárdio
5.
NPJ Regen Med ; 8(1): 22, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117221

RESUMO

Engineered whole lungs may one day expand therapeutic options for patients with end-stage lung disease. However, the feasibility of ex vivo lung regeneration remains limited by the inability to recapitulate mature, functional alveolar epithelium. Here, we modulate multimodal components of the alveolar epithelial type 2 cell (AEC2) niche in decellularized lung scaffolds in order to guide AEC2 behavior for epithelial regeneration. First, endothelial cells coordinate with fibroblasts, in the presence of soluble growth and maturation factors, to promote alveolar scaffold population with surfactant-secreting AEC2s. Subsequent withdrawal of Wnt and FGF agonism synergizes with tidal-magnitude mechanical strain to induce the differentiation of AEC2s to squamous type 1 AECs (AEC1s) in cultured alveoli, in situ. These results outline a rational strategy to engineer an epithelium of AEC2s and AEC1s contained within epithelial-mesenchymal-endothelial alveolar-like units, and highlight the critical interplay amongst cellular, biochemical, and mechanical niche cues within the reconstituting alveolus.

6.
PNAS Nexus ; 2(3): pgad011, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36896133

RESUMO

Hypertrophic cardiomyopathy (HCM) is an inherited disorder often caused by mutations to sarcomeric genes. Many different HCM-associated TPM1 mutations have been identified but they vary in their degrees of severity, prevalence, and rate of disease progression. The pathogenicity of many TPM1 variants detected in the clinical population remains unknown. Our objective was to employ a computational modeling pipeline to assess pathogenicity of one such variant of unknown significance, TPM1 S215L, and validate predictions using experimental methods. Molecular dynamic simulations of tropomyosin on actin suggest that the S215L significantly destabilizes the blocked regulatory state while increasing flexibility of the tropomyosin chain. These changes were quantitatively represented in a Markov model of thin-filament activation to infer the impacts of S215L on myofilament function. Simulations of in vitro motility and isometric twitch force predicted that the mutation would increase Ca2+ sensitivity and twitch force while slowing twitch relaxation. In vitro motility experiments with thin filaments containing TPM1 S215L revealed higher Ca2+ sensitivity compared with wild type. Three-dimensional genetically engineered heart tissues expressing TPM1 S215L exhibited hypercontractility, upregulation of hypertrophic gene markers, and diastolic dysfunction. These data form a mechanistic description of TPM1 S215L pathogenicity that starts with disruption of the mechanical and regulatory properties of tropomyosin, leading thereafter to hypercontractility and finally induction of a hypertrophic phenotype. These simulations and experiments support the classification of S215L as a pathogenic mutation and support the hypothesis that an inability to adequately inhibit actomyosin interactions is the mechanism whereby thin-filament mutations cause HCM.

7.
J Mol Cell Cardiol ; 174: 1-14, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36370475

RESUMO

Familial cardiomyopathy is a precursor of heart failure and sudden cardiac death. Over the past several decades, researchers have discovered numerous gene mutations primarily in sarcomeric and cytoskeletal proteins causing two different disease phenotypes: hypertrophic (HCM) and dilated (DCM) cardiomyopathies. However, molecular mechanisms linking genotype to phenotype remain unclear. Here, we employ a systems approach by integrating experimental findings from preclinical studies (e.g., murine data) into a cohesive signaling network to scrutinize genotype to phenotype mechanisms. We developed an HCM/DCM signaling network model utilizing a logic-based differential equations approach and evaluated model performance in predicting experimental data from four contexts (HCM, DCM, pressure overload, and volume overload). The model has an overall prediction accuracy of 83.8%, with higher accuracy in the HCM context (90%) than DCM (75%). Global sensitivity analysis identifies key signaling reactions, with calcium-mediated myofilament force development and calcium-calmodulin kinase signaling ranking the highest. A structural revision analysis indicates potential missing interactions that primarily control calcium regulatory proteins, increasing model prediction accuracy. Combination pharmacotherapy analysis suggests that downregulation of signaling components such as calcium, titin and its associated proteins, growth factor receptors, ERK1/2, and PI3K-AKT could inhibit myocyte growth in HCM. In experiments with patient-specific iPSC-derived cardiomyocytes (MLP-W4R;MYH7-R723C iPSC-CMs), combined inhibition of ERK1/2 and PI3K-AKT rescued the HCM phenotype, as predicted by the model. In DCM, PI3K-AKT-NFAT downregulation combined with upregulation of Ras/ERK1/2 or titin or Gq protein could ameliorate cardiomyocyte morphology. The model results suggest that HCM mutations that increase active force through elevated calcium sensitivity could increase ERK activity and decrease eccentricity through parallel growth factors, Gq-mediated, and titin pathways. Moreover, the model simulated the influence of existing medications on cardiac growth in HCM and DCM contexts. This HCM/DCM signaling model demonstrates utility in investigating genotype to phenotype mechanisms in familial cardiomyopathy.


Assuntos
Cardiomiopatias , Cardiomiopatia Hipertrófica , Insuficiência Cardíaca , Animais , Camundongos , Conectina/genética , Conectina/metabolismo , Miócitos Cardíacos/metabolismo , Cardiomiopatia Hipertrófica/genética , Cálcio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Cardiomiopatias/metabolismo , Insuficiência Cardíaca/metabolismo
8.
Cells ; 11(19)2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36231013

RESUMO

Arrhythmogenic cardiomyopathy (ACM) is an inherited disorder characterized by fibro-fatty infiltration with an increased propensity for ventricular arrhythmias and sudden death. Genetic variants in desmosomal genes are associated with ACM. Incomplete penetrance is a common feature in ACM families, complicating the understanding of how external stressors contribute towards disease development. To analyze the dual role of genetics and external stressors on ACM progression, we developed one of the first mouse models of ACM that recapitulates a human variant by introducing the murine equivalent of the human R451G variant into endogenous desmoplakin (DspR451G/+). Mice homozygous for this variant displayed embryonic lethality. While DspR451G/+ mice were viable with reduced expression of DSP, no presentable arrhythmogenic or structural phenotypes were identified at baseline. However, increased afterload resulted in reduced cardiac performance, increased chamber dilation, and accelerated progression to heart failure. In addition, following catecholaminergic challenge, DspR451G/+ mice displayed frequent and prolonged arrhythmic events. Finally, aberrant localization of connexin-43 was noted in the DspR451G/+ mice at baseline, becoming more apparent following cardiac stress via pressure overload. In summary, cardiovascular stress is a key trigger for unmasking both electrical and structural phenotypes in one of the first humanized ACM mouse models.


Assuntos
Displasia Arritmogênica Ventricular Direita , Animais , Arritmias Cardíacas/genética , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/metabolismo , Desmoplaquinas/genética , Modelos Animais de Doenças , Coração , Humanos , Camundongos , Fenótipo
9.
Stem Cell Reports ; 17(9): 2037-2049, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35931080

RESUMO

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have wide potential application in basic research, drug discovery, and regenerative medicine, but functional maturation remains challenging. Here, we present a method whereby maturation of hiPSC-CMs can be accelerated by simultaneous application of physiological Ca2+ and frequency-ramped electrical pacing in culture. This combination produces positive force-frequency behavior, physiological twitch kinetics, robust ß-adrenergic response, improved Ca2+ handling, and cardiac troponin I expression within 25 days. This study provides insights into the role of Ca2+ in hiPSC-CM maturation and offers a scalable platform for translational and clinical research.


Assuntos
Cálcio , Células-Tronco Pluripotentes Induzidas , Cálcio/metabolismo , Diferenciação Celular/fisiologia , Humanos , Miócitos Cardíacos , Engenharia Tecidual/métodos
10.
Circulation ; 145(16): 1238-1253, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35384713

RESUMO

BACKGROUND: Familial hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease and is typically caused by mutations in genes encoding sarcomeric proteins that regulate cardiac contractility. HCM manifestations include left ventricular hypertrophy and heart failure, arrythmias, and sudden cardiac death. How dysregulated sarcomeric force production is sensed and leads to pathological remodeling remains poorly understood in HCM, thereby inhibiting the efficient development of new therapeutics. METHODS: Our discovery was based on insights from a severe phenotype of an individual with HCM and a second genetic alteration in a sarcomeric mechanosensing protein. We derived cardiomyocytes from patient-specific induced pluripotent stem cells and developed robust engineered heart tissues by seeding induced pluripotent stem cell-derived cardiomyocytes into a laser-cut scaffold possessing native cardiac fiber alignment to study human cardiac mechanobiology at both the cellular and tissue levels. Coupled with computational modeling for muscle contraction and rescue of disease phenotype by gene editing and pharmacological interventions, we have identified a new mechanotransduction pathway in HCM, shown to be essential in modulating the phenotypic expression of HCM in 5 families bearing distinct sarcomeric mutations. RESULTS: Enhanced actomyosin crossbridge formation caused by sarcomeric mutations in cardiac myosin heavy chain (MYH7) led to increased force generation, which, when coupled with slower twitch relaxation, destabilized the MLP (muscle LIM protein) stretch-sensing complex at the Z-disc. Subsequent reduction in the sarcomeric muscle LIM protein level caused disinhibition of calcineurin-nuclear factor of activated T-cells signaling, which promoted cardiac hypertrophy. We demonstrate that the common muscle LIM protein-W4R variant is an important modifier, exacerbating the phenotypic expression of HCM, but alone may not be a disease-causing mutation. By mitigating enhanced actomyosin crossbridge formation through either genetic or pharmacological means, we alleviated stress at the Z-disc, preventing the development of hypertrophy associated with sarcomeric mutations. CONCLUSIONS: Our studies have uncovered a novel biomechanical mechanism through which dysregulated sarcomeric force production is sensed and leads to pathological signaling, remodeling, and hypertrophic responses. Together, these establish the foundation for developing innovative mechanism-based treatments for HCM that stabilize the Z-disc MLP-mechanosensory complex.


Assuntos
Cardiomiopatia Hipertrófica Familiar , Cardiomiopatia Hipertrófica , Actomiosina/genética , Humanos , Proteínas com Domínio LIM , Mecanotransdução Celular , Proteínas Musculares , Mutação , Miócitos Cardíacos
11.
J Vis Exp ; (179)2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35129166

RESUMO

There is a need for improved 3-dimensional (3D) lung models that recapitulate the architectural and cellular complexity of the native lung alveolus ex vivo. Recently developed organoid models have facilitated the expansion and study of lung epithelial progenitors in vitro, but these platforms typically rely on mouse tumor-derived matrix and/or serum, and incorporate just one or two cellular lineages. Here, we describe a protocol for generating engineered lung tissues (ELTs) based on the multi-lineage recellularization of decellularized precision-cut lung slices (PCLS). ELTs contain alveolar-like structures comprising alveolar epithelium, mesenchyme, and endothelium, within an extracellular matrix (ECM) substrate closely resembling that of native lung. To generate the tissues, rat lungs are inflated with agarose, sliced into 450 µm-thick slices, cut into strips, and decellularized. The resulting acellular ECM scaffolds are then reseeded with primary endothelial cells, fibroblasts, and alveolar epithelial type 2 cells (AEC2s). AEC2s can be maintained in ELT culture for at least 7 days with a serum-free, chemically-defined growth medium. Throughout the tissue preparation and culture process, the slices are clipped into a cassette system that facilitates handling and standardized cell seeding of multiple ELTs in parallel. These ELTs represent an organotypic culture platform that should facilitate investigations of cell-cell and cell-matrix interactions within the alveolus as well as biochemical signals regulating AEC2s and their niche.


Assuntos
Células Endoteliais , Alicerces Teciduais , Animais , Matriz Extracelular/química , Pulmão , Camundongos , Alvéolos Pulmonares , Ratos , Alicerces Teciduais/química
12.
Circ Res ; 130(6): 871-886, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35168370

RESUMO

BACKGROUND: Altered kinase localization is gaining appreciation as a mechanism of cardiovascular disease. Previous work suggests GSK-3ß (glycogen synthase kinase 3ß) localizes to and regulates contractile function of the myofilament. We aimed to discover GSK-3ß's in vivo role in regulating myofilament function, the mechanisms involved, and the translational relevance. METHODS: Inducible cardiomyocyte-specific GSK-3ß knockout mice and left ventricular myocardium from nonfailing and failing human hearts were studied. RESULTS: Skinned cardiomyocytes from knockout mice failed to exhibit calcium sensitization with stretch indicating a loss of length-dependent activation (LDA), the mechanism underlying the Frank-Starling Law. Titin acts as a length sensor for LDA, and knockout mice had decreased titin stiffness compared with control mice, explaining the lack of LDA. Knockout mice exhibited no changes in titin isoforms, titin phosphorylation, or other thin filament phosphorylation sites known to affect passive tension or LDA. Mass spectrometry identified several z-disc proteins as myofilament phospho-substrates of GSK-3ß. Agreeing with the localization of its targets, GSK-3ß that is phosphorylated at Y216 binds to the z-disc. We showed pY216 was necessary and sufficient for z-disc binding using adenoviruses for wild-type, Y216F, and Y216E GSK-3ß in neonatal rat ventricular cardiomyocytes. One of GSK-3ß's z-disc targets, abLIM-1 (actin-binding LIM protein 1), binds to the z-disc domains of titin that are important for maintaining passive tension. Genetic knockdown of abLIM-1 via siRNA in human engineered heart tissues resulted in enhancement of LDA, indicating abLIM-1 may act as a negative regulator that is modulated by GSK-3ß. Last, GSK-3ß myofilament localization was reduced in left ventricular myocardium from failing human hearts, which correlated with depressed LDA. CONCLUSIONS: We identified a novel mechanism by which GSK-3ß localizes to the myofilament to modulate LDA. Importantly, z-disc GSK-3ß levels were reduced in patients with heart failure, indicating z-disc localized GSK-3ß is a possible therapeutic target to restore the Frank-Starling mechanism in patients with heart failure.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Animais , Conectina/genética , Conectina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Humanos , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Fosforilação , Ratos
13.
J Gen Physiol ; 154(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35045156

RESUMO

Myofilaments and their associated proteins, which together constitute the sarcomeres, provide the molecular-level basis for contractile function in all muscle types. In intact muscle, sarcomere-level contraction is strongly coupled to other cellular subsystems, in particular the sarcolemmal membrane. Skinned muscle preparations (where the sarcolemma has been removed or permeabilized) are an experimental system designed to probe contractile mechanisms independently of the sarcolemma. Over the last few decades, experiments performed using permeabilized preparations have been invaluable for clarifying the understanding of contractile mechanisms in both skeletal and cardiac muscle. Today, the technique is increasingly harnessed for preclinical and/or pharmacological studies that seek to understand how interventions will impact intact muscle contraction. In this context, intrinsic functional and structural differences between skinned and intact muscle pose a major interpretational challenge. This review first surveys measurements that highlight these differences in terms of the sarcomere structure, passive and active tension generation, and calcium dependence. We then highlight the main practical challenges and caveats faced by experimentalists seeking to emulate the physiological conditions of intact muscle. Gaining an awareness of these complexities is essential for putting experiments in due perspective.


Assuntos
Contração Miocárdica , Sarcômeros , Cálcio , Contração Muscular , Miocárdio , Miofibrilas
14.
J Mol Cell Cardiol ; 162: 1-9, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34487755

RESUMO

Diabetes doubles the risk of developing heart failure (HF). As the prevalence of diabetes grows, so will HF unless the mechanisms connecting these diseases can be identified. Methylglyoxal (MG) is a glycolysis by-product that forms irreversible modifications on lysine and arginine, called glycation. We previously found that myofilament MG glycation causes sarcomere contractile dysfunction and is increased in patients with diabetes and HF. The aim of this study was to discover the molecular mechanisms by which MG glycation of myofilament proteins cause sarcomere dysfunction and to identify therapeutic avenues to compensate. In humans with type 2 diabetes without HF, we found increased glycation of sarcomeric actin compared to non-diabetics and it correlated with decreased calcium sensitivity. Depressed calcium sensitivity is pathogenic for HF, therefore myofilament glycation represents a promising therapeutic target to inhibit the development of HF in diabetics. To identify possible therapeutic targets, we further defined the molecular actions of myofilament glycation. Skinned myocytes exposed to 100 µM MG exhibited decreased calcium sensitivity, maximal calcium-activated force, and crossbridge kinetics. Replicating MG's functional affects using a computer simulation of sarcomere function predicted simultaneous decreases in tropomyosin's blocked-to-closed rate transition and crossbridge duty cycle were consistent with all experimental findings. Stopped-flow experiments and ATPase activity confirmed MG decreased the blocked-to-closed transition rate. Currently, no therapeutics target tropomyosin, so as proof-of-principal, we used a n-terminal peptide of myosin-binding protein C, previously shown to alter tropomyosin's position on actin. C0C2 completely rescued MG-induced calcium desensitization, suggesting a possible treatment for diabetic HF.


Assuntos
Diabetes Mellitus Tipo 2 , Tropomiosina , Citoesqueleto de Actina/metabolismo , Cálcio/metabolismo , Simulação por Computador , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Miofibrilas/metabolismo , Tropomiosina/metabolismo
15.
iScience ; 24(10): 103208, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34755085

RESUMO

Paradoxically, many microRNAs appear to exhibit entirely opposite functions when placed in different contexts. For example, miR-125b has been shown to be pro-apoptotic in some studies, but anti-apoptotic in others. To investigate this phenomenon, we combine computational modeling with experimental approaches to examine how the function of miR-125b in apoptosis varies with respect to the expression levels of its pro-apoptotic and anti-apoptotic targets. In doing so, we elucidate a general trend that miR-125b is more pro-apoptotic when its anti-apoptotic targets are overexpressed, whereas it is more anti-apoptotic when its pro-apoptotic targets are overexpressed. We show that it is possible to completely reverse miR-125b's function in apoptosis by modifying the expression levels of its target genes. Furthermore, miR-125b's function may also be altered by the presence of anticancer drugs. These results suggest that the function of a microRNA can vary substantially and is dependent on its target gene expression levels.

16.
J Gen Physiol ; 153(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34319370

RESUMO

Hypertrophic cardiomyopathy (HCM) is an inherited disorder caused primarily by mutations to thick and thinfilament proteins. Although thin filament mutations are less prevalent than their oft-studied thick filament counterparts, they are frequently associated with severe patient phenotypes and can offer important insight into fundamental disease mechanisms. We have performed a detailed study of tropomyosin (TPM1) E192K, a variant of uncertain significance associated with HCM. Molecular dynamics revealed that E192K results in a more flexible TPM1 molecule, which could affect its ability to regulate crossbridges. In vitro motility assays of regulated actin filaments containing TPM1 E192K showed an overall loss of Ca2+ sensitivity. To understand these effects, we used multiscale computational models that suggested a subtle phenotype in which E192K leads to an inability to completely inhibit actin-myosin crossbridge activity at low Ca2+. To assess the physiological impact of the mutation, we generated patient-derived engineered heart tissues expressing E192K. These tissues showed disease features similar to those of the patients, including cellular hypertrophy, hypercontractility, and diastolic dysfunction. We hypothesized that excess residual crossbridge activity could be triggering cellular hypertrophy, even if the overall Ca2+ sensitivity was reduced by E192K. To test this hypothesis, the cardiac myosin-specific inhibitor mavacamten was applied to patient-derived engineered heart tissues for 4 d followed by 24 h of washout. Chronic mavacamten treatment abolished contractile differences between control and TPM1 E192K engineered heart tissues and reversed hypertrophy in cardiomyocytes. These results suggest that the TPM1 E192K mutation triggers cardiomyocyte hypertrophy by permitting excess residual crossbridge activity. These studies also provide direct evidence that myosin inhibition by mavacamten can counteract the hypertrophic effects of mutant tropomyosin.


Assuntos
Miosinas , Tropomiosina , Miosinas Cardíacas , Cardiomegalia/genética , Humanos , Mutação , Tropomiosina/genética
18.
J Mol Cell Cardiol ; 158: 11-25, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33992697

RESUMO

We have created a novel in-vitro platform to study reverse remodeling of engineered heart tissue (EHT) after mechanical unloading. EHTs were created by seeding decellularized porcine myocardial sections with a mixture of primary neonatal rat ventricular myocytes and cardiac fibroblasts. Each end of the ribbon-like constructs was fixed to a plastic clip, allowing the tissues to be statically stretched or slackened. Inelastic deformation was introduced by stretching tissues by 20% of their original length. EHTs were subsequently unloaded by returning tissues to their original, shorter length. Mechanical characterization of EHTs immediately after unloading and at subsequent time points confirmed the presence of a reverse-remodeling process, through which stress-free tissue length was increased after chronic stretch but gradually decreased back to its original value within 9 days. When a cardiac myosin inhibitor was applied to tissues after unloading, EHTs failed to completely recover their passive and active mechanical properties, suggesting a role for actomyosin contraction in reverse remodeling. Selectively inhibiting cardiomyocyte contraction or fibroblast activity after mechanical unloading showed that contractile activity of both cell types was required to achieve full remodeling. Similar tests with EHTs formed from human induced pluripotent stem cell-derived cardiomyocytes also showed reverse remodeling that was enhanced when treated with omecamtiv mecarbil, a myosin activator. These experiments suggest essential roles for active sarcomeric contraction and fibroblast activity in reverse remodeling of myocardium after mechanical unloading. Our findings provide a mechanistic rationale for designing potential therapies to encourage reverse remodeling in patient hearts.


Assuntos
Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Miofibroblastos/metabolismo , Sarcômeros/metabolismo , Transdução de Sinais/efeitos dos fármacos , Engenharia Tecidual/métodos , Remodelação Ventricular/efeitos dos fármacos , Actomiosina/metabolismo , Animais , Animais Recém-Nascidos , Benzamidas/farmacologia , Benzilaminas/farmacologia , Miosinas Cardíacas/antagonistas & inibidores , Miosinas Cardíacas/metabolismo , Linhagem Celular , Dioxóis/farmacologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Miofibroblastos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , Suínos , Alicerces Teciduais , Uracila/análogos & derivados , Uracila/farmacologia , Ureia/análogos & derivados , Ureia/farmacologia
19.
J Mol Cell Cardiol ; 155: 50-57, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33647310

RESUMO

The cardiac thin filament is regulated in a Ca2+-dependent manner through conformational changes of troponin and tropomyosin (Tm). It has been generally understood that under conditions of low Ca2+ the inhibitory peptide domain (IP) of troponin I (TnI) binds to actin and holds Tm over the myosin binding sites on actin to prevent crossbridge formation. More recently, evidence that the C-terminal mobile domain (MD) of TnI also binds actin has made for a more complex scenario. This study uses a computational model to investigate the consequences of assuming that TnI regulates Tm movement via two actin-binding domains rather than one. First, a 16-state model of the cardiac thin filament regulatory unit was created with TnI-IP as the sole regulatory domain. Expansion of this to include TnI-MD formed a 24-state model. Comparison of these models showed that assumption of a second actin-binding site allows the individual domains to have a lower affinity for actin than would be required for IP acting alone. Indeed, setting actin affinities of the IP and MD to 25% of that assumed for the IP in the single-site model was sufficient to achieve precisely the same degree of Ca2+ regulation. We also tested the 24-state model's ability to represent steady-state experimental data in the case of disruption of either the IP or MD. We were able to capture qualitative changes in several properties that matched what was seen in the experimental data. Lastly, simulations were run to examine the effect of disruption of the IP or MD on twitch dynamics. Our results suggest that both domains are required to keep diastolic cross-bridge activity to a minimum and accelerate myofilament relaxation. Overall, our analyses support a paradigm in which two domains of TnI bind with moderate affinity to actin, working in tandem to complete Ca2+-dependent regulation of the thin filament.


Assuntos
Modelos Biológicos , Contração Miocárdica , Miofibrilas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Troponina I/metabolismo , Algoritmos , Animais , Humanos , Cadeias de Markov , Método de Monte Carlo , Ligação Proteica , Troponina I/química
20.
Am J Physiol Heart Circ Physiol ; 320(3): H1112-H1123, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33449850

RESUMO

Comprehensive functional characterization of cardiac tissue includes investigation of length and load dependence. Such measurements have been slow to develop in engineered heart tissues (EHTs), whose mechanical characterizations have been limited primarily to isometric and near-isometric behaviors. A more realistic assessment of myocardial function would include force-velocity curves to characterize power output and force-length loops mimicking the cardiac cycle to characterize work output. We developed a system that produces force-velocity curves and work loops in human EHTs using an adaptive iterative control scheme. We used human EHTs in this system to perform a detailed characterization of the cardiac ß-myosin specific inhibitor, mavacamten. Consistent with the clinically proposed application of this drug to treat hypertrophic cardiomyopathy, our data support the premise that mavacamten improves diastolic function through reduction of diastolic stiffness and isometric relaxation time. Meanwhile, the effects of mavacamten on length- and load-dependent muscle performance were mixed. The drug attenuated the length-dependent response at small stretch values but showed normal length dependency at longer lengths. Peak power output of mavacamten-treated EHTs showed reduced power output as expected but also shifted peak power output to a lower load. Here, we demonstrate a robust method for the generation of isotonic contraction series and work loops in engineered heart tissues using an adaptive-iterative method. This approach reveals new features of mavacamten pharmacology, including previously unappreciated effects on intrinsic myosin dynamics and preservation of Frank-Starling behavior at longer muscle lengths.NEW & NOTEWORTHY We applied innovative methods to comprehensively characterize the length and load-dependent behaviors of engineered human cardiac muscle when treated with the cardiac ß-myosin specific inhibitor mavacamten, a drug on the verge of clinical implementation for hypertrophic cardiomyopathy. We find mechanistic support for the role of mavacamten in improving diastolic function of cardiac tissue and note novel effects on work and power.


Assuntos
Benzilaminas/farmacologia , Inibidores Enzimáticos/farmacologia , Coração/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Engenharia Tecidual , Uracila/análogos & derivados , Função Ventricular/efeitos dos fármacos , Miosinas Ventriculares/antagonistas & inibidores , Animais , Linhagem Celular , Diástole , Humanos , Modelos Cardiovasculares , Força Muscular/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Sus scrofa , Técnicas de Cultura de Tecidos , Alicerces Teciduais , Uracila/farmacologia , Miosinas Ventriculares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...