Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2593: 317-322, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36513941

RESUMO

Traditional immunofluorescence (IF) imaging assays are limited to the detection of just a few markers due to spectral overlap of fluorescent emission bands. Furthermore, standard fluorescent imaging instruments have a dynamic range that is too narrow to capture the full range of expression values seen in biology, precluding the accurate quantification of single-cell target expression. Here we describe a protocol for detection and quantification of dozens of protein targets with single-cell quantitative precision using an iterative staining approach called ChipCytometry™.


Assuntos
Diagnóstico por Imagem , Proteínas , Imunofluorescência , Coloração e Rotulagem , Análise Espacial
2.
Nat Commun ; 10(1): 4508, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586058

RESUMO

Wet-dry cycling is widely regarded as a means of driving condensation reactions under prebiotic conditions to generate mixtures of prospective biopolymers. A criticism of this model is its reliance on unpredictable rehydration events, like rainstorms. Here, we report the ability of deliquescent minerals to mediate the oligomerization of glycine during iterative wet-dry cycles. The reaction mixtures evaporate to dryness at high temperatures and spontaneously reacquire water vapor to form aqueous solutions at low temperatures. Deliquescent mixtures can foster yields of oligomerization over ten-fold higher than non-deliquescent controls. The deliquescent mixtures tightly regulate their moisture content, which is crucial, as too little water precludes dissolution of the reactants while too much water favors hydrolysis over condensation. The model also suggests a potential reason why life evolved to favor the enrichment of potassium: so living systems could acquire and retain sufficient water to serve as a solvent for biochemical reactions.


Assuntos
Biopolímeros/química , Polimerização , Prebióticos , Água/química , Temperatura Alta , Umidade , Hidrólise , Solubilidade
3.
ACS Omega ; 4(7): 12745-12752, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460397

RESUMO

This paper describes a method for the quantitative analysis of mixtures of glycine and its oligomers by ion-pair high-performance liquid chromatography (IP-HPLC), with a particular focus on applications in origins-of-life research. We demonstrate the identification of glycine oligomers (Gly n ) up to 14 residues long-the approximate detectable limit of their solubility in water-and measurement of the concentration of these species in the product mixture of an oligomerization reaction. The molar response factors for higher oligomers of glycine-which are impractical to obtain as pure samples-are extrapolated from direct analysis of pure standards of n = 3-6, which established a clear linear trend. We compare and contrast our method to those in previous reports with respect to accuracy and practicality. While the data reported here are specific to the analysis of oligomers of glycine, the approach should be applicable to the design of methods for the analysis of oligomerization of other amino acids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...