Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36295328

RESUMO

The incorporation of carboxyl functionalized multi-walled carbon nanotube (MWCNT- COOH) into a polymethyl methacrylate (PMMA) has been investigated. The resultant tensile and flexural mechanical properties have been determined. In this paper, a novel synthesis process for a MWCNT-reinforced polymer nanocomposite is proposed. The proposed method significantly eliminates the most challenging issues of the nano-dispersed phase, including agglomeration and non-homogeneous mixing within a given matrix material, and also resolves the issues occurring in conventional mixing processes. The results of scanning electron microscopy support these claims. This 3D-mixing process is followed by an extrusion process, using a twin-screw extruder for pristine MWCNT, and a compression molding process for COOH-MWCNT, to prepare test specimens for experimentally determining the mechanical properties. The test specimens are fabricated using 0.1, 0.5, and 1.0 wt.% MWCNT, with a remaining PMMA phase. The testing is conducted according to ASTM D3039 and ASTM D7264 standards. Significant improvements of 25.41%, 35.85%, and 31.75% in tensile properties and 18.27%, 48%, and 33.33% in flexural properties for 0.1, 0.5, and 1.0 wt.% COOH-MWCNT in PMMA, respectively, compared to non-functionalized MWCNTs, were demonstrated. The highest strength was recorded for the nanocomposite with 0.5 wt.% f-MWCNT content, indicating the best doping effect at a lower concentration of f-MWCNT. The proposed CNT-PMMA nanocomposite may be found suitable for use as a scaffold material in the domain of bone tissue engineering research. This type of research possesses a high strength requirement, which may be fulfilled using MWCNT. Furthermore, this analysis also shows a significant amount of enhancement in flexural strength, which is clinically required for fabricating denture bases.

2.
Materials (Basel) ; 15(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36295359

RESUMO

The objective of the study was to check the feasibility of machining Stellite 6, a cobalt-chromium superalloy, using TiN-coated carbide inserts in an end milling operation. The inserts were coated using the magnetron sputtering process. The sputtering power and gas flow rate were considered as the variables during the coating process. The performance of the coated binary carbide insert was checked during the end milling of Stellite 6 (~45 HRC) through an experiment with a Taguchi design. Experimental runs based on an orthogonal array were executed for each insert type to check the feasibility of machining this cobalt-based alloy. Adequate precision and the optimum parametric conditions were determined and are reported in this study. Analysis of variance (ANOVA) with a two-factor interaction model was also undertaken to forecast the key elements influencing surface roughness. Based on the ANOVA model, the depth of the cut, combined with the insert type, was the factor that had the greatest influence on surface roughness, followed by the cutting feed, whereas the cutting velocity had the least significance based on the tests. Moreover, the regression analysis demonstrated that the created model can be used to accurately forecast surface roughness in end milling of Stellite 6 with confidence intervals of 95%.

3.
Materials (Basel) ; 15(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36295410

RESUMO

Structural adhesives have shown significant improvements in their behavior over the past few decades [...].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...