Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Mol Nutr Food Res ; 68(7): e2400062, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38506156

RESUMO

Obesity is a global health issue characterized by the excessive fat accumulation, leading to an increased risk of chronic noncommunicable diseases (NCDs), including metabolic dysfunction-associated fatty liver disease (MAFLD), which can progress from simple steatosis to steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Currently, there are no approved pharmacological protocols for prevention/treatment of MAFLD, and due the complexity lying beneath these mechanisms, monotherapies are unlikely to be efficacious. This review article analyzes the possibility that NCDs can be prevented or attenuated by the combination of bioactive substances, as they could promote higher response rates, maximum reaction results, additive or synergistic effects due to compounds having similar or different mechanisms of action and/or refraining possible side effects, related to the use of lower doses and exposures times than monotherapies. Accordingly, prevention of mouse MAFLD is observed with the combination of the omega-3 docosahexaenoic acid with the antioxidant hydroxytyrosol, whereas attenuation of mild cognitive impairment is attained by folic acid plus cobalamin in elderly patients. The existence of several drawbacks underlying published monotherapies or combined trials, opens space for adequate and stricter experimental and clinical tryouts to achieve meaningful outcomes with human applicability.


Assuntos
Carcinoma Hepatocelular , Ácidos Graxos Ômega-3 , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Doenças não Transmissíveis , Idoso , Humanos , Animais , Camundongos , Doenças não Transmissíveis/prevenção & controle , Antioxidantes , Hepatopatia Gordurosa não Alcoólica/prevenção & controle
2.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958514

RESUMO

The complex interplay between dietary factors, inflammation, and macrophage polarization is pivotal in the pathogenesis and progression of chronic liver diseases (CLDs). Omega-3 fatty acids (FAs) have brought in attention due to their potential to modulate inflammation and exert protective effects in various pathological conditions. Omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have shown promise in mitigating inflammation and enhancing the resolution of inflammatory responses. They influence the M1/M2 macrophage phenotype balance, promoting a shift towards the M2 anti-inflammatory phenotype. Specialized pro-resolving mediators (SPMs), such as resolvins (Rvs), protectins (PDs), and maresins (MaRs), have emerged as potent regulators of inflammation and macrophage polarization. They show anti-inflammatory and pro-resolving properties, by modulating the expression of cytokines, facilitate the phagocytosis of apoptotic cells, and promote tissue repair. MaR1, in particular, has demonstrated significant hepatoprotective effects by promoting M2 macrophage polarization, reducing oxidative stress, and inhibiting key inflammatory pathways such as NF-κB. In the context of CLDs, such as nonalcoholic fatty liver disease (NAFLD) and cirrhosis, omega-3s and their SPMs have shown promise in attenuating liver injury, promoting tissue regeneration, and modulating macrophage phenotypes. The aim of this article was to analyze the emerging role of omega-3 FAs and their SPMs in the context of macrophage polarization, with special interest in the mechanisms underlying their effects and their interactions with other cell types within the liver microenvironment, focused on CLDs and the development of novel therapeutic strategies.


Assuntos
Ácidos Graxos Ômega-3 , Hepatopatias , Humanos , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Anti-Inflamatórios/uso terapêutico , Hepatopatias/metabolismo , Fenótipo , Mediadores da Inflamação/metabolismo
3.
Aging (Albany NY) ; 15(10): 4035-4050, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37244285

RESUMO

One of the most pronounced changes in the elderly is loss of strength and mobility due to the decline of skeletal muscle function, resulting in a multifactorial condition termed sarcopenia. Although significant clinical changes begin to manifest at advanced ages, recent studies have shown that changes at the cellular and molecular level precede the symptomatology of sarcopenia. By utilizing a single-cell transcriptomic atlas of mouse skeletal muscle across the lifespan, we identified a clear sign of immune senescence that presents during middle age. More importantly, the change in macrophage phenotype in middle age may explain the changes in extracellular matrix composition, especially collagen synthesis, that contributes to fibrosis and overall muscle weakness with advanced age. Our results show a novel paradigm whereby skeletal muscle dysfunction is driven by alterations in tissue-resident macrophages before the appearance of clinical symptoms in middle-aged mice, providing a new therapeutic approach via regulation of immunometabolism.


Assuntos
Sarcopenia , Camundongos , Animais , Envelhecimento/fisiologia , Longevidade , Músculo Esquelético/fisiologia , Macrófagos
4.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982728

RESUMO

Increase in body fat contributes to loss of function and changes in skeletal muscle, accelerating sarcopenia, a phenomenon known as sarco-obesity or sarcopenic obesity. Studies suggest that obesity decreases the skeletal muscle (SM)'s ability to oxidize glucose, increases fatty acid oxidation and reactive oxygen species production, due to mitochondrial dysfunction. Exercise improves mitochondrial dysfunction in obesity; however, it is not known if exercise regulates the mitochondrial unfolded protein response (UPRmt) in the SM. Our study aimed to determine the mito-nuclear UPRmt in response to exercise in a model of obesity, and how this response is associated with the improvement in SM functioning after exercise training. C57BL/6 mice were fed a normal diet and high-fat diet (HFD) for 12 weeks. After 8 weeks, animals were subdivided into sedentary and exercised for the remaining 4 weeks. Grip strength and maximal velocity of mice submitted to HFD improved after training. Our results show an increase in the activation of UPRmt after exercise while in obese mice, proteostasis is basally decreased but shows a more pronounced increase with exercise. These results correlate with improvement in the circulating triglycerides, suggesting mitochondrial proteostasis could be protective and could be related to mitochondrial fuel utilization in SM.


Assuntos
Resistência à Insulina , Condicionamento Físico Animal , Sarcopenia , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Músculo Esquelético/metabolismo , Modelos Animais de Doenças , Sarcopenia/metabolismo , Condicionamento Físico Animal/fisiologia
5.
Minerva Urol Nephrol ; 75(3): 388-397, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35274902

RESUMO

BACKGROUND: Few reports have addressed the change in renal replacement therapy (RRT) management in the Intensive care Units (ICUs) over the years in western countries. This study aims to assess the trend of dialytic practice in a 4.5-million population-based study of the northwest of Italy. METHODS: A nine-year survey covering all the RRT provided in the ICUs. Consultant nephrologists of the 26 Nephrology and Dialysis centers reported their activities in the years 2007, 2009, 2012, and 2015. RESULTS: From 2007 to 2015 the patients treated increased from 1042 to 1139, and the incidence of RRT from 254 to 263 cases/10^6 inhabitants. The workload for dialysis center was higher in the larger hub hospitals. RRT for acute kidney injury (AKI), continuation of treatment in chronically dialyzed patients, or extrarenal indications accounted for about the stable rate of 70, 25 and 5% of all RRT sessions, respectively. Continuous modality days increased from 2731 days (39.5%) in 2007 to 5076 (70.6%) in 2015, when the continuous+prolonged treatment days were 6880/7196 (95.6% of total days). As to RRT timing, in 2015 only the classical clinical criteria, and no K-DIGO stage were adopted by most Centers. As to RRT interruption, in 2015 urine volume was the first criterion. Implementation of citrate anticoagulation (RCA) for RRT patients significantly increased from 2.8% in 2007 to 30.9% in 2015, when it was applied in all 26 Centers. CONCLUSIONS: From 2007 to 2015, current practice has changed towards shared protocols, with increasing continuous modality and RCA implementation.


Assuntos
Ácido Cítrico , Diálise Renal , Humanos , Terapia de Substituição Renal/métodos , Unidades de Terapia Intensiva , Itália , Citratos , Anticoagulantes
6.
Curr Med Chem ; 30(34): 3927-3939, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36503393

RESUMO

Reactive species (RS) are produced in aerobic and anaerobic cells at different concentrations and exposure times, which may trigger diverse responses depending on the cellular antioxidant potential and defensive devices. Study searches were carried out using the PubMed database of the National Library of Medicine-National Institutes of Health. Cellular RS include reactive oxygen (ROS), nitrogen (RNS), lipid (RLS) and electrophilic species that determine either cell homeostasis or dysfunctional biomolecules. The complexity of redox signalling is associated with the variety of RS produced, the reactivity of the target biomolecules with RS, the multiplicity of the counteracting processes available, and the exposure time. The continuous distortion in the prooxidant/ antioxidant balance favoring the former is defined as oxidative stress, whose intensity determines (i) the basal not harmful unbalance (oxidative eustress) at RS levels in the pM to nM range that supports physiological processes (e.g., immune function, thyroid function, insulin action) and beneficial responses to external interventions via redox signalling; or (ii) the excessive, toxic distortion (oxidative distress) at RS levels exceeding those in the oxidative eustress zone, leading to the unspecific oxidation of biomolecules and loss of their functions causing cell death with associated pathological states. The cellular redox imbalance is a complex phenomenon whose underlying mechanisms are beginning to be understood, although how RS initiates cell signalling is a matter of debate. Knowledge of this aspect will provide a better understanding of how RS triggers the pathogenesis and progression of the disease and uncover future therapeutic measures.


Assuntos
Antioxidantes , Estresse Oxidativo , Humanos , Antioxidantes/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
7.
Antioxidants (Basel) ; 11(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35739940

RESUMO

More than 80 million people live and work (in a chronic or intermittent form) above 2500 masl, and 35 million live in the Andean Mountains. Furthermore, in Chile, it is estimated that 100,000 people work in high-altitude shifts, where stays in the lowlands are interspersed with working visits in the highlands. Acute exposure to high altitude has been shown to induce oxidative stress in healthy human lowlanders due to increased free radical formation and decreased antioxidant capacity. However, intermittent hypoxia (IH) induces preconditioning in animal models, generating cardioprotection. Here, we aim to describe the responses of a cardiac function to four cycles of intermittent hypobaric hypoxia (IHH) in a rat model. The twelve adult Wistar rats were randomly divided into two equal groups, a four-cycle of IHH and a normobaric hypoxic control. Intermittent hypoxia was induced in a hypobaric chamber in four continuous cycles (1 cycle = 4 days of hypoxia + 4 days of normoxia), reaching a barometric pressure equivalent to 4600 m of altitude (428 Torr). At the end of the fourth cycle, cardiac structural and functional variables were also determined by echocardiography; furthermore, cardiac oxidative stress biomarkers (4-Hydroxynonenal, HNE; nitrotyrosine, NT), antioxidant enzymes, and NLRP3 inflammasome panel expression are also determined. Our results show a higher ejection and a shortening fraction of the left ventricle function by the end of the fourth cycle. Furthermore, cardiac tissue presented a decreased expression of antioxidant proteins. However, a decrease in IL-1ß, TNF-αn, and oxidative stress markers is observed in IHH compared to normobaric hypoxic controls. Non-significant differences were found in protein levels of NLRP3 and caspase-1. IHH exposure determines structural and functional heart changes. These findings suggest that initial states of IHH are beneficial for cardiovascular function and protection.

8.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628392

RESUMO

Glucocorticoids (GC) are steroids hormones that drive circulating glucose availability through gluconeogenesis in the liver. However, alternative splicing of the GR mRNA produces two isoforms, termed GRα and GRß. GRα is the classic receptor that binds to GCs and mediates the most described actions of GCs. GRß does not bind GCs and acts as a dominant-negative inhibitor of GRα. Moreover, GRß has intrinsic and GRα-independent transcriptional activity. To date, it remains unknown if GRß modulates glucose handling in hepatocytes. Therefore, the study aims to characterize the impact of GRß overexpression on glucose uptake and storage using an in vitro hepatocyte model. Here we show that GRß overexpression inhibits the induction of gluconeogenic genes by dexamethasone. Moreover, GRß activates the Akt pathway, increases glucose transports mRNA, increasing glucose uptake and glycogen storage as an insulin-mimetic. Our results suggest that GRß has agonist-independent insulin-mimetic actions in HepG2 cells.


Assuntos
Glucocorticoides , Insulina , Glucocorticoides/farmacologia , Glucose , Insulina Regular Humana , RNA Mensageiro/genética , Receptores de Glucocorticoides
9.
Pharmaceuticals (Basel) ; 15(5)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35631399

RESUMO

Continuing with our program to obtain new histamine H3 receptor (H3R) ligands, in this work we present the synthesis, H3R affinity and in silico studies of a series of eight new synthetically accessible purine derivatives. These compounds are designed from the isosteric replacement of the scaffold presented in our previous ligand, pyrrolo[2,3-d]pyrimidine ring, by a purine core. This design also considers maintaining the fragment of bipiperidine at C-4 and aromatic rings with electron-withdrawing groups at N-9, as these fragments are part of the proposed pharmacophore. The in vitro screening results show that two purine derivatives, 3d and 3h, elicit high affinities to the H3R (Ki values of 2.91 and 5.51 nM, respectively). Both compounds are more potent than the reference drug pitolisant (Ki 6.09 nM) and show low toxicity with in vitro models (IC50 > 30 µM on HEK-293, SH-SY5Y and HepG2 cell lines). Subsequently, binding modes of these ligands are obtained using a model of H3R by docking and molecular dynamics studies, thus determining the importance of the purine ring in enhancing affinity due to the hydrogen bonding of Tyr374 to the N-7 of this heterocycle. Finally, in silico ADME properties are predicted, which indicate a promising future for these molecules in terms of their physical−chemical properties, absorption, oral bioavailability and penetration in the CNS.

10.
Mitochondrion ; 63: 9-22, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34990812

RESUMO

Mitochondrial dysfunction has been defined as a reduced efficiency of mitochondria to produce ATP given by a loss of mitochondrial membrane potential, alterations in the electron transport chain (ETC) function, with increase in reactive oxygen species (ROS) generation and decrease in oxygen consumption. During the last decades, mitochondrial dysfunction has been the focus of many researchers as a convergent point for the pathophysiology of several diseases. Numerous investigations have demonstrated that mitochondrial dysfunction is detrimental to cells, tissues and organisms, nevertheless, dysfunctional mitochondria can signal in a particular way in response to stress, a characteristic that may be useful to search for new therapeutic strategies with a common feature. The aim of this review addresses mitochondrial dysfunction and stress signaling as a promising target for future drug development.


Assuntos
Mitocôndrias , Mitofagia , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
11.
Rev. logop. foniatr. audiol. (Ed. impr.) ; 41(4): 214-214, Oct-Dic, 2021.
Artigo em Espanhol | IBECS | ID: ibc-227667

RESUMO

Introducción: Tanto el envejecimiento saludable como el Deterioro Cognitivo Leve (estado preclínico entre la salubridad cognitiva y la demencia) se postulan como dos estados diferentes no patológicos en el adulto mayor en los que encontramos alteraciones lingüísticas y comunicativas parecidas pero que requieren atención diferenciada, siendo la detección precoz de estas fundamental para la preservación comunicativa. Objetivos: Los objetivos planteados son analizar las alteraciones en lenguaje y comunicación en dichas poblaciones para establecer las diferencias más significativas y realizar un diagnóstico diferencial. Metodología: La metodología empleada ha sido hipotética-deductiva, con análisis cuantitativo y cualitativo. Resultados: Entre los resultados obtenidos se confirma la distinción en las alteraciones de ambas poblaciones, destacando el área pragmática como elemento más diferenciador. Conclusiones: Tras la investigación realizada se concluye la necesidad de realizar un diagnóstico diferencial en ambas poblaciones, para poder llevar a cabo la intervención logopédica más adecuada a cada población.(AU)


Assuntos
Humanos , Masculino , Feminino , Disfunção Cognitiva , Diagnóstico Diferencial , Envelhecimento , Idioma , Comunicação
12.
Molecules ; 26(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34684731

RESUMO

Type 2 diabetes and obesity are major problems worldwide and dietary polyphenols have shown efficacy to ameliorate signs of these diseases. Anthocyanins from berries display potent antioxidants and protect against weight gain and insulin resistance in different models of diet-induced metabolic syndrome. Olanzapine is known to induce an accelerated form of metabolic syndrome. Due to the aforementioned, we evaluated whether delphinidin-3,5-O-diglucoside (DG) and delphinidin-3-O-sambubioside-5-O-glucoside (DS), two potent antidiabetic anthocyanins isolated from Aristotelia chilensis fruit, could prevent olanzapine-induced steatosis and insulin resistance in liver and skeletal muscle cells, respectively. HepG2 liver cells and L6 skeletal muscle cells were co-incubated with DG 50 µg/mL or DS 50 µg/mL plus olanzapine 50 µg/mL. Lipid accumulation was determined in HepG2 cells while the expression of p-Akt as a key regulator of the insulin-activated signaling pathways, mitochondrial function, and glucose uptake was assessed in L6 cells. DS and DG prevented olanzapine-induced lipid accumulation in liver cells. However, insulin signaling impairment induced by olanzapine in L6 cells was not rescued by DS and DG. Thus, anthocyanins modulate lipid metabolism, which is a relevant factor in hepatic tissue, but do not significantly influence skeletal muscle, where a potent antioxidant effect of olanzapine was found.


Assuntos
Antocianinas/farmacologia , Elaeocarpaceae/metabolismo , Glucosídeos/farmacologia , Antocianinas/química , Antocianinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fígado Gorduroso/metabolismo , Glucosídeos/química , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos , Lipídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/patologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Olanzapina , Extratos Vegetais/farmacologia , Polifenóis/farmacologia
13.
Biochim Biophys Acta Mol Basis Dis ; 1867(10): 166208, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34214606

RESUMO

Heart failure (HF) is one of the leading causes of hospitalization for the adult population and a major cause of mortality worldwide. The HF syndrome is characterized by the heart's inability to supply the cardiac output required to meet the body's metabolic requirements or only at the expense of elevated filling pressures. HF without overt impairment of left ventricular ejection fraction (LVEF) was initially labeled as "diastolic HF" until recognizing the coexistence of both systolic and diastolic abnormalities in most cases. Acknowledging these findings, the preferred nomenclature is HF with preserved EF (HFpEF). This syndrome primarily affects the elderly population and is associated with a heterogeneous overlapping of comorbidities that makes its diagnosis challenging. Despite extensive research, there is still no evidence-based therapy for HFpEF, reinforcing the need for a thorough understanding of the pathophysiology underlying its onset and progression. The role of mitochondrial dysfunction in developing the pathophysiological changes that accompany HFpEF onset and progression (low-grade systemic inflammation, oxidative stress, endothelial dysfunction, and myocardial remodeling) has just begun to be acknowledged. This review summarizes our current understanding of the participation of the mitochondrial network in the pathogenesis of HFpEF, with particular emphasis on the signaling pathways involved, which may provide future therapeutic targets.


Assuntos
Insuficiência Cardíaca/patologia , Mitocôndrias/patologia , Animais , Humanos , Inflamação/patologia , Controle de Qualidade , Função Ventricular Esquerda/fisiologia
14.
Aging Dis ; 11(6): 1513-1526, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33269104

RESUMO

For the first time in history, most of the population has a life expectancy equal or greater than 60 years. By the year 2050, it is expected that the world population in that age range will reach 2000 million, an increase of 900 million with respect to 2015, which poses new challenges for health systems. In this way, it is relevant to analyze the most common diseases associated with the aging process, namely Alzheimer´s disease, Parkinson Disease and Type II Diabetes, some of which may have a common genetic component that can be detected before manifesting, in order to delay their progress. Genetic inheritance and epigenetics are factors that could be linked in the development of these pathologies. Some researchers indicate that the BDNF gene is a common factor of these diseases, and apparently some of its polymorphisms favor the progression of them. In this regard, alterations in the level of BDNF expression and secretion, due to polymorphisms, could be linked to the development and/or progression of neurodegenerative and metabolic disorders. In this review we will deepen on the different polymorphisms in the BDNF gene and their possible association with age-related pathologies, to open the possibilities of potential therapeutic targets.

15.
Int J Mol Sci ; 21(20)2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-33081022

RESUMO

Mitochondria are the first-line defense of the cell in the presence of stressing processes that can induce mitochondrial dysfunction. Under these conditions, the activation of two axes is accomplished, namely, (i) the mitochondrial unfolded protein response (UPRmt) to promote cell recovery and survival of the mitochondrial network; (ii) the mitophagy process to eliminate altered or dysfunctional mitochondria. For these purposes, the former response induces the expression of chaperones, proteases, antioxidant components and protein import and assembly factors, whereas the latter is signaled through the activation of the PINK1/Parkin and BNIP3/NIX pathways. These adaptive mechanisms may be compromised during aging, leading to the development of several pathologies including sarcopenia, defined as the loss of skeletal muscle mass and performance; and non-alcoholic fatty liver disease (NAFLD). These age-associated diseases are characterized by the progressive loss of organ function due to the accumulation of reactive oxygen species (ROS)-induced damage to biomolecules, since the ability to counteract the continuous and large generation of ROS becomes increasingly inefficient with aging, resulting in mitochondrial dysfunction as a central pathogenic mechanism. Nevertheless, the role of the integrated stress response (ISR) involving UPRmt and mitophagy in the development and progression of these illnesses is still a matter of debate, considering that some studies indicate that the prolonged exposure to low levels of stress may trigger these mechanisms to maintain mitohormesis, whereas others sustain that chronic activation of them could lead to cell death. In this review, we discuss the available research that contributes to unveil the role of the mitochondrial UPR in the development of sarcopenia, in an attempt to describe changes prior to the manifestation of severe symptoms; and in NAFLD, in order to prevent or reverse fat accumulation and its progression by means of suitable protocols to be addressed in future studies.


Assuntos
Mitocôndrias/metabolismo , Mitofagia , Hepatopatia Gordurosa não Alcoólica/patologia , Sarcopenia/patologia , Resposta a Proteínas não Dobradas , Animais , Humanos , Músculo Esquelético/patologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-32973679

RESUMO

Hypertension (HTN) is a public health concern and a major preventable cause of cardiovascular disease (CVD). When uncontrolled, HTN may lead to adverse cardiac remodeling, left ventricular hypertrophy, and ultimately, heart failure. Regular aerobic exercise training exhibits blood pressure protective effects, improves myocardial function, and may reverse pathologic cardiac hypertrophy. These beneficial effects depend at least partially on improved mitochondrial function, decreased oxidative stress, endothelial dysfunction, and apoptotic cell death, which supports the general recommendation of moderate exercise in CVD patients. However, most of these mechanisms have been described on healthy individuals; the effect of moderate exercise on HTN subjects at a cellular level remain largely unknown. We hypothesized that hypertension in adult spontaneously hypertensive rats (SHRs) reduces the mitochondrial response to moderate exercise in the myocardium. Methods: Eight-month-old SHRs and their normotensive control-Wistar-Kyoto rats (WKYR)-were randomly assigned to moderate exercise on a treadmill five times per week with a running speed set at 10 m/min and 15° inclination. The duration of each session was 45 min with a relative intensity of 70-85% of the maximum O2 consumption for a total of 8 weeks. A control group of untrained animals was maintained in their cages with short sessions of 10 min at 10 m/min two times per week to maintain them accustomed to the treadmill. After completing the exercise protocol, we assessed maximum exercise capacity and echocardiographic parameters. Animals were euthanized, and heart and muscle tissue were harvested for protein determinations and gene expression analysis. Measurements were compared using a nonparametric ANOVA (Kruskal-Wallis), with post-hoc Dunn's test. Results: At baseline, SHR presented myocardial remodeling evidenced by left ventricular hypertrophy (interventricular septum 2.08 ± 0.07 vs. 1.62 ± 0.08 mm, p < 0.001), enlarged left atria (0.62 ± 0.1 mm vs. 0.52 ± 0.1, p = 0.04), and impaired diastolic function (E/A ratio 2.43 ± 0.1 vs. 1.56 ± 0.2) when compared to WKYR. Moderate exercise did not induce changes in ventricular remodeling but improved diastolic filling pattern (E/A ratio 2.43 ± 0.1 in untrained SHR vs. 1.89 ± 0.16 trained SHR, p < 0.01). Histological analysis revealed increased myocyte transversal section area, increased Myh7 (myosin heavy chain 7) expression, and collagen fiber accumulation in SHR-control hearts. While the exercise protocol did not modify cardiac size, there was a significant reduction of cardiomyocyte size in the SHR-exercise group. Conversely, titin expression increased only WYK-exercise animals but remained unchanged in the SHR-exercise group. Mitochondrial response to exercise also diverged between SHR and WYKR: while moderate exercise showed an apparent increase in mRNA levels of Ppargc1α, Opa1, Mfn2, Mff, and Drp1 in WYKR, mitochondrial dynamics proteins remained unchanged in response to exercise in SHR. This finding was further confirmed by decreased levels of MFN2 and OPA1 in SHR at baseline and increased OPA1 processing in response to exercise in heart. In summary, aerobic exercise improves diastolic parameters in SHR but fails to activate the cardiomyocyte mitochondrial adaptive response observed in healthy individuals. This finding may explain the discrepancies on the effect of exercise in clinical settings and evidence of the need to further refine our understanding of the molecular response to physical activity in HTN subjects.


Assuntos
Cardiomegalia/terapia , Regulação da Expressão Gênica , Hipertensão/fisiopatologia , Dinâmica Mitocondrial , Miócitos Cardíacos/patologia , Condicionamento Físico Animal/métodos , Animais , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Miócitos Cardíacos/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Remodelação Ventricular
17.
Front Pharmacol ; 11: 429, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390830

RESUMO

A growing body of research indicates that cortisol, the glucocorticoid product of the activation of the hypothalamic-pituitary-adrenal axis, plays a role in the pathophysiology of metabolic syndrome. In this regard, chronic exposure to cortisol is associated with risk factors related to metabolic syndrome like weight gain, type 2 diabetes, hypertension, among others. Mifepristone is the only FDA-approved drug with antiglucocorticoids properties for improved the glycemic control in patients with type 2 patients secondary to endogenous Cushing's syndrome. Mifepristone also have been shown positive effects in rodents models of diabetes and patients with obesity due to antipsychotic treatment. However, the underlying molecular mechanisms are not fully understood. In this perspective, we summarized the literature regarding the beneficial effects of mifepristone in metabolic syndrome from animal studies to clinical research. Also, we propose a potential mechanism for the beneficial effects in insulin sensitivity which involved the regulation of mitochondrial function in muscle cells.

18.
N Engl J Med ; 381(13): 1294, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31553851
19.
Int J Hyg Environ Health ; 222(4): 695-704, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31097324

RESUMO

To quantify the impact of fecal pollution on the microbiological bathing water quality, predictive modeling is being increasingly used in which the decay rate of the fecal indicators plays an important role. The decay of sewage-sourced enterococci and Escherichia coli culturable cells and their associated molecular markers (16SrRNA) quantified by Quantitative Reverse transcription PCR were measured in controlled microcosms as well in in situ conditions using different water types, from marine waters to fresh waters with intermediate salinity. All bacterial decays were fitted to a first order decay model. In the laboratory study, the light radiation was the most influent factor affecting E. coli and enterococci survival by culture methods although environmental conditions weakly impacted the decay of molecular markers. The results also indicated differential persistence of genetic markers and culturable organisms of fecal indicator bacteria in different water systems. For each bacteria indicator and analytical method, four equations were obtained to predict the time required to have a 90% reduction (T90) according irradiance, salinity and temperature parameters. The weighted model RMSE (Root Mean Square Error) calculated for all field experiments showed that quantification obtained with the equations defined by laboratory-based study compared reasonably well with in-situ observed quantification (0.4 and 0.2 log by standard culture methods for E. coli and Enterococcus spp. and 0.6 and 0.3 log by RT-qPCR for E. coli and Enterococcus spp. respectively). The modeling tool can be used to predict the presence of fecal pollution in marine and fresh waters in combination with either culture based- or rapid molecular methods.


Assuntos
Enterococcus/isolamento & purificação , Escherichia coli/isolamento & purificação , Água Doce/microbiologia , Água do Mar/microbiologia , Enterococcus/genética , Monitoramento Ambiental , Escherichia coli/genética , França , Marcadores Genéticos , RNA Ribossômico 16S
20.
Clin Genet ; 95(5): 615-626, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30653653

RESUMO

The congenital disorders of glycosylation (CDG) are defects in glycoprotein and glycolipid glycan synthesis and attachment. They affect multiple organ/systems, but non-specific symptoms render the diagnosis of the different CDG very challenging. Phosphomannomutase 2 (PMM2)-CDG is the most common CDG, but advances in genetic analysis have shown others to occur more commonly than previously thought. The present work reports the clinical and mutational spectrum of 25 non-PMM2 CDG patients. The most common clinical symptoms were hypotonia (80%), motor or psychomotor disability (80%) and craniofacial dysmorphism (76%). Based on their serum transferrin isoform profile, 18 were classified as CDG-I and 7 as CDG-II. Pathogenic variations were found in 16 genes (ALG1, ALG6, ATP6V0A2, B4GALT1, CCDC115, COG7, DOLK, DPAGT1, DPM1, GFPT1, MPI, PGM1, RFT1, SLC35A2, SRD5A3, and SSR4). Overall, 27 variants were identified, 12 of which are novel. The results highlight the importance of combining genetic and biochemical analyses for the early diagnosis of this heterogeneous group of disorders.


Assuntos
Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/genética , Fosfotransferases (Fosfomutases)/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...