Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Commun ; 6(3): fcae093, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38707711

RESUMO

Deep brain stimulation has revolutionized the treatment of movement disorders and is gaining momentum in the treatment of several other neuropsychiatric disorders. In almost all applications of this therapy, the insertion of electrodes into the target has been shown to induce some degree of clinical improvement prior to stimulation onset. Disregarding this phenomenon, commonly referred to as 'insertional effect', can lead to biased results in clinical trials, as patients receiving sham stimulation may still experience some degree of symptom amelioration. Similar to the clinical scenario, an improvement in behavioural performance following electrode implantation has also been reported in preclinical models. From a neurohistopathologic perspective, the insertion of electrodes into the brain causes an initial trauma and inflammatory response, the activation of astrocytes, a focal release of gliotransmitters, the hyperexcitability of neurons in the vicinity of the implants, as well as neuroplastic and circuitry changes at a distance from the target. Taken together, it would appear that electrode insertion is not an inert process, but rather triggers a cascade of biological processes, and, as such, should be considered alongside the active delivery of stimulation as an active part of the deep brain stimulation therapy.

2.
Front Oncol ; 14: 1348118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800378

RESUMO

Objectives: Bisphosphonates (BFs) show clinical effectiveness in managing osteoporosis and bone metastases but pose risks of bisphosphonate-related jaw osteonecrosis (BRONJ). With no established gold standard for BRONJ treatment, our focus is on symptom severity reduction. We aimed to assess the preventive effects of bioactive glass and/or pericardial membrane in a preclinical BRONJ model, evaluating their potential to prevent osteonecrosis and bone loss post-tooth extractions in zoledronic acid (ZA)-treated animals. Methods: Rats, receiving ZA or saline biweekly for four weeks, underwent 1st and 2nd lower left molar extractions. Pericardial membrane alone or with F18 bioglass was applied post-extractions. Microarchitecture analysis and bone loss assessment utilized computerized microtomography (CT) and positron emission tomography (PET) with 18F-FDG and 18F-NaF tracers. Histological analysis evaluated bone injury. Results: Exclusive alveolar bone loss occurred post-extraction in the continuous ZA group, inducing osteonecrosis, osteolysis, osteomyelitis, and abscess formation. Concurrent pericardial membrane with F18 bioglass application prevented these outcomes. Baseline PET/CT scans showed no discernible uptake differences, but post-extraction 18F-FDG tracer imaging revealed heightened glucose metabolism at the extraction site in the ZA-treated group with membrane, contrasting the control group. Conclusion: These findings suggest pericardial membrane with F18 bioglass effectively prevents BRONJ in the preclinical model.

3.
NPJ Parkinsons Dis ; 10(1): 73, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553493

RESUMO

Pain control after deep brain stimulation (DBS) in Parkinson's disease (PD) remains unclear. Following six months, subthalamic (STN)-DBS reduced sensory complaints related to parkinsonism and bodily discomfort, increasing central beta-endorphin level. Pallidal GPi-DBS decreased bodily discomfort and beta-endorphin levels. Unexplained pain by other conditions and bodily discomfort were negatively correlated with beta-endorphin levels. Thus, DBS regulates central opioids, and prioritizing STN is important for PD patients with significant sensory complications.

4.
Neurosurgery ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38511957

RESUMO

Deep brain stimulation (DBS) is an emerging therapy for treatment-resistant depression (TRD). Although adverse effects have been reported in early-phase and a few randomized clinical trials, little is known about its overall safety profile, which has been assumed to be similar to that of DBS for movement disorders. The objective of this study was to pool existing safety data on DBS for TRD. Following PRISMA guidelines, PubMed was searched for English articles describing adverse outcomes after DBS for TRD. Studies were included if they reported at least 5 patients with a minimal follow-up of 6 months. After abstract (n = 607) and full-article review (n = 127), 28 articles reporting on 353 patients met criteria for final inclusion. Follow-up of the studies retrieved ranged from 12 to 96 months. Hemorrhages occurred in 0.8% of patients and infections in 10.2%. The rate of completed suicide was 2.5%. Development or worsening of depressive symptoms, anxiety, and mania occurred in 18.4%, 9.1%, and 5.1%, respectively. There were some differences between targets, but between-study heterogeneity precluded statistical comparisons. In conclusion, DBS for TRD is associated with surgical and psychiatric adverse events. Hemorrhage and infection occur at rates within an accepted range for other DBS applications. The risk of suicide after DBS for TRD is 2.5% but may not represent a significant deviation from the natural history of TRD. Finally, risks of worsening depression, anxiety, and the incidence of mania should be acknowledged when considering DBS for TRD.

5.
Exp Neurol ; 368: 114501, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37558154

RESUMO

Treatment-resistant depression (TRD) is a debilitating condition that affects millions of individuals worldwide. Deep brain stimulation (DBS) has been widely used with excellent outcomes in neurological disorders such as Parkinson's disease, tremor, and dystonia. More recently, DBS has been proposed as an adjuvant therapy for TRD. To date, the antidepressant efficacy of DBS is still controversial, and its mechanisms of action remain poorly understood. Astrocytes are the most abundant cells in the nervous system. Once believed to be a "supporting" element for neuronal function, astrocytes are now recognized to play a major role in brain homeostasis, neuroinflammation and neuroplasticity. Because of its many roles in complex multi-factorial disorders, including TRD, understanding the effect of DBS on astrocytes is pivotal to improve our knowledge about the antidepressant effects of this therapy. In depression, the number of astrocytes and the expression of astrocytic markers are decreased. One of the potential consequences of this reduced astrocytic function is the development of aberrant glutamatergic neurotransmission, which has been documented in several models of depression-like behavior. Evidence from preclinical work suggests that DBS may directly influence astrocytic activity, modulating the release of gliotransmitters, reducing neuroinflammation, and altering structural tissue organization. Compelling evidence for an involvement of astrocytes in potential mechanisms of DBS derive from studies suggesting that pharmacological lesions or the inhibition of these cells abolishes the antidepressant-like effect of DBS. In this review, we summarize preclinical data suggesting that the modulation of astrocytes may be an important mechanism for the antidepressant-like effects of DBS.


Assuntos
Estimulação Encefálica Profunda , Humanos , Astrócitos/fisiologia , Doenças Neuroinflamatórias , Encéfalo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico
6.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445699

RESUMO

Norepinephrine plays an important role in modulating memory through its beta-adrenergic receptors (Adrß: ß1, ß2 and ß3). Here, we hypothesized that multisensory stimulation would reverse memory impairment caused by the inactivation of Adrß3 (Adrß3KO) with consequent inhibition of sustained glial-mediated inflammation. To test this, 21- and 86-day-old Adrß3KO mice were exposed to an 8-week multisensory stimulation (MS) protocol that comprised gustatory and olfactory stimuli of positive and negative valence; intellectual challenges to reach food; the use of hidden objects; and the presentation of food in ways that prompted foraging, which was followed by analysis of GFAP, Iba-1 and EAAT2 protein expression in the hippocampus (HC) and amygdala (AMY). The MS protocol reduced GFAP and Iba-1 expression in the HC of young mice but not in older mice. While this protocol restored memory impairment when applied to Adrß3KO animals immediately after weaning, it had no effect when applied to adult animals. In fact, we observed that aging worsened the memory of Adrß3KO mice. In the AMY of Adrß3KO older mice, we observed an increase in GFAP and EAAT2 expression when compared to wild-type (WT) mice that MS was unable to reduce. These results suggest that a richer and more diverse environment helps to correct memory impairment when applied immediately after weaning in Adrß3KO animals and indicates that the control of neuroinflammation mediates this response.


Assuntos
Transtornos da Memória , Receptores Adrenérgicos beta , Camundongos , Animais , Masculino , Transtornos da Memória/genética , Transtornos da Memória/terapia , Transtornos da Memória/metabolismo , Receptores Adrenérgicos beta/metabolismo , Hipocampo/metabolismo , Norepinefrina/metabolismo
7.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175503

RESUMO

Epidural motor cortex stimulation (MCS) is an effective treatment for refractory neuropathic pain; however, some individuals are unresponsive. In this study, we correlated the effectiveness of MCS and refractoriness with the expression of cytokines, neurotrophins, and nociceptive mediators in the dorsal root ganglion (DRG), sciatic nerve, and plasma of rats with sciatic neuropathy. MCS inhibited hyperalgesia and allodynia in two-thirds of the animals (responsive group), and one-third did not respond (refractory group). Chronic constriction injury (CCI) increased IL-1ß in the nerve and DRG, inhibited IL-4, IL-10, and IL-17A in the nerve, decreased ß-endorphin, and enhanced substance P in the plasma, compared to the control. Responsive animals showed decreased NGF and increased IL-6 in the nerve, accompanied by restoration of local IL-10 and IL-17A and systemic ß-endorphin. Refractory animals showed increased TNF-α and decreased IFNγ in the nerve, along with decreased TNF-α and IL-17A in the DRG, maintaining low levels of systemic ß-endorphin. Our findings suggest that the effectiveness of MCS depends on local control of inflammatory and neurotrophic changes, accompanied by recovery of the opioidergic system observed in neuropathic conditions. So, understanding the refractoriness to MCS may guide an improvement in the efficacy of the technique, thus benefiting patients with persistent neuropathic pain.


Assuntos
Analgesia , Neuralgia , Ratos , Animais , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , beta-Endorfina/metabolismo , Neuralgia/terapia , Neuralgia/metabolismo , Hiperalgesia/terapia , Hiperalgesia/metabolismo , Nervo Isquiático/metabolismo , Gânglios Espinais/metabolismo
8.
Sci Rep ; 13(1): 4591, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944694

RESUMO

Breast cancer is the second most common diagnosed type of cancer in women. Chronic neuropathic pain after mastectomy occurs frequently and is a serious health problem. In our previous single-center, prospective, randomized controlled clinical study, we demonstrated that the combination of serratus anterior plane block (SAM) and pectoral nerve block type I (PECS I) with general anesthesia reduced acute postoperative pain. The present report describes a prospective follow-up study of this published study to investigate the development of chronic neuropathic pain 12 months after mastectomy by comparing the use of general anesthesia alone and general anesthesia with SAM + PECS I. Additionally, the use of analgesic medication, quality of life, depressive symptoms, and possible correlations between plasma levels of interleukin (IL)-1 beta, IL-6, and IL-10 collected before and 24 h after surgery as predictors of pain and depression were evaluated. The results showed that the use of SAM + PECS I with general anesthesia reduced numbness, hypoesthesia to touch, the incidence of patients with chronic pain in other body regions and depressive symptoms, however, did not significantly reduce the incidence of chronic neuropathic pain after mastectomy. Additionally, there was no difference in the consumption of analgesic medication and quality of life. Furthermore, no correlation was observed between IL-1 beta, IL-6, and IL-10 levels and pain and depression. The combination of general anesthesia with SAM + PECS I reduced the occurrence of specific neuropathic pain descriptors and depressive symptoms. These results could promote the use of SAM + PECS I blocks for the prevention of specific neuropathic pain symptoms after mastectomy.Registration of clinical trial: The Research Ethics Board of the Hospital Sirio-Libanes/Brazil approved the study (CAAE 48721715.0.0000.5461). This study is registered at Registro Brasileiro de Ensaios Clinicos (ReBEC), and ClinicalTrials.gov, Identifier: NCT02647385.


Assuntos
Neoplasias da Mama , Neuralgia , Nervos Torácicos , Feminino , Humanos , Mastectomia/efeitos adversos , Neoplasias da Mama/cirurgia , Neoplasias da Mama/complicações , Seguimentos , Interleucina-10 , Estudos Prospectivos , Qualidade de Vida , Interleucina-6/uso terapêutico , Dor Pós-Operatória/tratamento farmacológico , Neuralgia/complicações , Músculos
9.
Biomedicines ; 11(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36830833

RESUMO

BACKGROUND: Parkinson's disease (PD) is characterized by a progressive loss of nigrostriatal dopaminergic neurons with impaired motor and non-motor symptoms. It has been suggested that motor asymmetry could be caused due to an imbalance in dopamine levels, as visualized by dopamine transporter single emission computed tomography test (DAT-SPECT), which might be related to indirect measures of neurodegeneration, evaluated by the Montreal Cognitive Assessment (MOCA) and α-synuclein levels in the cerebrospinal fluid (CSF). Therefore, this study aimed to understand the correlation between disease laterality, DAT-SPECT, cognition, and α-synuclein levels in PD. METHODS: A total of 28 patients in the moderate-advanced stage of PD were subjected to neurological evaluation, TRODAT-1-SPECT/CT imaging, MOCA, and quantification of the levels of α-synuclein. RESULTS: We found that α-synuclein in the CSF was correlated with global cognition (positive correlation, r2 = 0.3, p = 0.05) and DAT-SPECT concentration in the putamen (positive correlation, r2 = 0.4, p = 0.005), and striatum (positive correlation, r2 = 0.2, p = 0.03), thus working as a neurodegenerative biomarker. No other correlations were found between DAT-SPECT, CSF α-synuclein, and cognition, thus suggesting that they may be lost with disease progression. CONCLUSIONS: Our data highlight the importance of understanding the dysfunction of the dopaminergic system in the basal ganglia and its complex interactions in modulating cognition.

10.
Eur Neuropsychopharmacol ; 68: 11-26, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36640729

RESUMO

Deep brain stimulation (DBS) has emerged as a neuromodulation therapy for treatment-resistant depression, but its actual efficacy and mechanisms of action are still unclear. Changes in neurochemical transmission are important mechanisms of antidepressant therapies. Here, we review the preclinical DBS literature reporting behavioural and neurochemical data associated with its antidepressant-like effects. The most commonly studied target in preclinical models was the ventromedial prefrontal cortex (vmPFC). In rodents, DBS delivered to this target induced serotonin (5-HT) release and increased 5-HT1B receptor expression. The antidepressant-like effects of vmPFC DBS seemed to be independent of the serotonin transporter and potentially mediated by the direct modulation of prefrontal projections to the raphe. Adenosinergic and glutamatergic transmission might have also play a role. Medial forebrain bundle (MFB) DBS increased dopamine levels and reduced D2 receptor expression, whereas nucleus accumbens (NAcc), and lateral habenula (LHb) stimulation increased catecholamine levels in different brain regions. In rodents, subthalamic nucleus (STN) DBS induced robust depression-like responses associated with a reduction in serotonergic transmission, as revealed by a decrease in serotonin release. Some of these effects seemed to be mediated by 5HT1A receptors. In conclusion, the antidepressant-like effects of DBS in preclinical models have been well documented in multiple targets. Though variable mechanisms have been proposed, DBS-induced acute and long-term changes in neurochemical substrates seem to play an important role in the antidepressant-like effects of this therapy.


Assuntos
Estimulação Encefálica Profunda , Depressão , Animais , Depressão/terapia , Depressão/metabolismo , Serotonina/metabolismo , Antidepressivos/uso terapêutico , Modelos Animais
11.
Cytokine ; 161: 156059, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36272241

RESUMO

Glioblastoma (GBM) is a life-threatening disease that presents high morbidity and mortality. The standardized treatment protocol results in a global survival of less than three years in the majority of cases. Immunotherapies have gained wide recognition in cancer treatment; however, GBM has an immunosuppressive microenvironment diminishing the possible effectiveness of this therapy. In this sense, investigating the inflammatory settings and the tumoral nature of GBM patients are an important goal to create an individual plan of treatment to improve overall survival rate and quality of life of these patients. Thirty-two patients who underwent surgical resection of GBM were included in this study. Tumor samples and 10 mL of peripheral blood were collected and immediately frozen. TNF-a, IL-1a and IL-4 were evaluated in the tumor and TNF-a, IL-1a and TGF-b in the plasma by Luminex assay. Immunohistochemistry analysis to determine immune celular profile was done, including immunohistochemistry for CD20, CD68 and CD3. Three cases were excluded. Tumor topography, tumor nature, and tumor volume reconstructions were accurately analyzed by T1-weighted, T2-weighted, and FLAIR magnetic resonance imaging. We found that GBM patients with below median peripheral levels of TNF-a and IL-1a had a decreased survival rate when compared to above median patients. On the other hand, patients with below median peripheral levels of TGF-b increased overall survival rate. Intratumoral IL-1a above median was associated with higher number of macrophages and fewer with B cells. Furthermore, plasmatic TNF-a levels were correlated with intratumoral TNF-a levels, suggesting that peripheral cytokines are related to the tumoral microenvironment. Even though tumor size has no difference regarding survival rate, we found a negative correlation between intratumoral IL-4 and tumor size, where larger tumors have less IL-4 expression. Nevertheless, the tumoral nature had a significant effect in overall survival rate, considering that infiltrative tumors showed decreased survival rate and intratumoral TNF-a. Moreover, expansive tumors revealed fewer macrophages and higher T cells. In multiple variation analyzes, we demonstrated that infiltrative tumors and below median peripheral IL-1a expression represent 3 times and 5 times hazard ratio, respectively, demonstrating a poor prognosis. Here we found that peripheral cytokines had a critical role as prognostic tools in a small cohort of GBM patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Citocinas , Qualidade de Vida , Interleucina-4 , Prognóstico , Microambiente Tumoral
12.
J Neurotrauma ; 40(5-6): 435-448, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35983592

RESUMO

Traumatic brain injury (TBI) has been associated with several lasting impairments that affect quality of life. Pre-clinical models of TBI have been studied to further our understanding of the underlying short-term and long-term symptomatology. Neuromodulation techniques have become of great interest in recent years as potential rehabilitative therapies after injury because of their capacity to alter neuronal activity and neural circuits in targeted brain regions. This systematic review aims to provide an overlook of the behavioral and neurochemical effects of transcranial direct current stimulation (tDCS), transcranial magnetic stimulation (TMS), deep brain stimulation (DBS), and vagus nerve stimulation (VNS) in pre-clinical TBI models. After screening 629 abstracts, 30 articles were pooled for review. These studies showed that tDCS, TMS, DBS, or VNS delivered to rodents restored TBI-induced deficits in coordination, balance, locomotor activity and improved cognitive impairments in memory, learning, and impulsivity. Potential mechanisms for these effects included neuroprotection, a decrease in apoptosis, neuroplasticity, and the restoration of neural circuit abnormalities. The translational value, potential applicability, and the interpretation of these findings in light of outcome data from clinical trials in patients with TBI are discussed.


Assuntos
Lesões Encefálicas Traumáticas , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Qualidade de Vida , Lesões Encefálicas Traumáticas/terapia , Lesões Encefálicas Traumáticas/complicações , Estimulação Magnética Transcraniana/métodos , Encéfalo
13.
Psychopharmacology (Berl) ; 239(12): 3875-3892, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36282287

RESUMO

BACKGROUND: Deep brain stimulation (DBS) delivered to the ventromedial prefrontal cortex (vmPFC) induces antidepressant- and anxiolytic-like responses in various animal models. Electrophysiology and neurochemical studies suggest that these effects may be dependent, at least in part, on the serotonergic system. In rodents, vmPFC DBS reduces raphe cell firing and increases serotonin (5-HT) release and the expression of serotonergic receptors in different brain regions. METHODS: We examined whether the behavioural responses of chronic vmPFC DBS are mediated by 5-HT1A or 5-HT1B receptors through a series of experiments. First, we delivered stimulation to mice undergoing chronic social defeat stress (CSDS), followed by a battery of behavioural tests. Second, we measured the expression of 5-HT1A and 5-HT1B receptors in different brain regions with western blot. Finally, we conducted pharmacological experiments to mitigate the behavioural effects of DBS using the 5-HT1A antagonist, WAY-100635, or the 5-HT1B antagonist, GR-127935. RESULTS: We found that chronic DBS delivered to stressed animals reduced the latency to feed in the novelty suppressed feeding test (NSF) and immobility in the forced swim test (FST). Though no significant changes were observed in receptor expression, 5-HT1B levels in DBS-treated animals were found to be non-significantly increased in the vmPFC, hippocampus, and nucleus accumbens and reduced in the raphe compared to non-stimulated controls. Finally, while animals given vmPFC stimulation along with WAY-100635 still presented significant responses in the NSF and FST, these were mitigated following GR-127935 administration. CONCLUSIONS: The antidepressant- and anxiolytic-like effects of DBS in rodents may be partially mediated by 5-HT1B receptors.


Assuntos
Ansiolíticos , Estimulação Encefálica Profunda , Animais , Camundongos , Serotonina/metabolismo , Ansiolíticos/farmacologia , Ansiolíticos/metabolismo , Derrota Social , Córtex Pré-Frontal , Modelos Animais de Doenças , Antidepressivos/farmacologia , Antidepressivos/metabolismo , Receptor 5-HT1B de Serotonina/metabolismo
14.
Acupunct Med ; 40(2): 169-177, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34758667

RESUMO

BACKGROUND: Neuropathic pain (NP) is a complex disease that remains challenging to treat. Low-frequency dense-and-disperse (DD) electroacupuncture (EA) has been used as adjuvant therapy for neuropathic pain; however, its analgesic effect decreases as stimulation time increases, or when it is repeatedly used. We hypothesized that a new frequency parameter could improve the effectiveness of EA, and aimed to compare the efficacy and duration of the analgesic effect between classic DD-EA and non-repetitive and non-sequential frequency (random frequency (RF)-EA) in neuropathic rats. Furthermore, the effect of RF-EA at local traditional acupuncture point locations versus auricular vagus nerve stimulation (aVNS) was evaluated. METHODS: Male Wistar rats with peripheral neuropathy were subjected to a single session of DD-EA or RF-EA for 20 or 40 min at ST36 + GB34. An additional group of rats was treated with RF-EA for 20 min using aVNS at the appropriate ear point locations. Paw pressure test, von Frey filaments and spontaneous pain scores were evaluated. Sham-operated rats were used as controls. RESULTS: In all, 20 min of RF-EA reversed hyperalgesia (for 24 h) and allodynia (for 8 h), showing a longer analgesic effect than DD-EA. Both RF-EA and DD-EA induced partial inhibition of spontaneous pain for 8 h. Forty minutes of DD-EA did not interfere with the NP phenomena; however, RF-EA induced significant long-term analgesia. aVNS induced an analgesic effect similar to local stimulation. CONCLUSION: This pilot study shows that RF-EA at both local traditional acupuncture point and auriculotherapy point locations induces long-lasting analgesia in neuropathic rats, and more effectively so than classical DD-EA.


Assuntos
Eletroacupuntura , Neuralgia , Animais , Masculino , Neuralgia/terapia , Projetos Piloto , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Roedores
15.
Front Pain Res (Lausanne) ; 3: 1084701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713643

RESUMO

The use of deep brain stimulation (DBS) for the treatment of chronic pain was one of the first applications of this technique in functional neurosurgery. Established brain targets in the clinic include the periaqueductal (PAG)/periventricular gray matter (PVG) and sensory thalamic nuclei. More recently, the anterior cingulum (ACC) and the ventral striatum/anterior limb of the internal capsule (VS/ALIC) have been investigated for the treatment of emotional components of pain. In the clinic, most studies showed a response in 20%-70% of patients. In various applications of DBS, animal models either provided the rationale for the development of clinical trials or were utilized as a tool to study potential mechanisms of stimulation responses. Despite the complex nature of pain and the fact that animal models cannot reliably reflect the subjective nature of this condition, multiple preparations have emerged over the years. Overall, DBS was shown to produce an antinociceptive effect in rodents when delivered to targets known to induce analgesic effects in humans, suggesting a good predictive validity. Compared to the relatively high number of clinical trials in the field, however, the number of animal studies has been somewhat limited. Additional investigation using modern neuroscience techniques could unravel the mechanisms and neurocircuitry involved in the analgesic effects of DBS and help to optimize this therapy.

16.
Cells ; 10(5)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064617

RESUMO

Persistent pain is a prevalent symptom of Parkinson's disease (PD), which is related to the loss of monoamines and neuroinflammation. Motor cortex stimulation (MCS) inhibits persistent pain by activating the descending analgesic pathways; however, its effectiveness in the control of PD-induced pain remains unclear. Here, we evaluated the analgesic efficacy of MCS together with serotonergic and spinal glial modulation in an experimental PD (ePD) rat model. Wistar rats with unilateral striatal 6-OHDA and MCS were assessed for behavioral immobility and nociceptive responses. The immunoreactivity of dopamine in the substantia nigra and serotonin in the nucleus raphe magnus (NRM) and the neuronal, astrocytic, and microglial activation in the dorsal horn of the spinal cord were evaluated. MCS, without interfering with dopamine loss, reversed ePD-induced immobility and hypernociception. This response was accompanied by an exacerbated increase in serotonin in the NRM and a decrease in neuronal and astrocytic hyperactivation in the spinal cord, without inhibiting ePD-induced microglial hypertrophy and hyperplasia. Taken together, MCS induces analgesia in the ePD model, while restores the descending serotonergic pathway with consequent inhibition of spinal neurons and astrocytes, showing the role of MCS in PD-induced pain control.


Assuntos
Astrócitos/metabolismo , Córtex Motor/fisiologia , Nociceptividade , Doença de Parkinson/metabolismo , Núcleos da Rafe/metabolismo , Serotonina/metabolismo , Aminas/metabolismo , Analgesia , Animais , Comportamento Animal , Modelos Animais de Doenças , Dopamina/metabolismo , Eletrodos , Inflamação , Masculino , Córtex Motor/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Dor/complicações , Manejo da Dor , Ratos , Ratos Wistar , Medula Espinal/metabolismo
17.
Sci Rep ; 11(1): 5533, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692398

RESUMO

Stroke is a multiphasic process involving a direct ischemic brain injury which is then exacerbated by the influx of immune cells into the brain tissue. Activation of brain endothelial cells leads to the expression of adhesion molecules such vascular cell adhesion molecule 1 (VCAM-1) on endothelial cells, further increasing leukocyte recruitment. Polymerase δ-interacting protein 2 (Poldip2) promotes brain vascular inflammation and leukocyte recruitment via unknown mechanisms. This study aimed to define the role of Poldip2 in mediating vascular inflammation and leukocyte recruitment following cerebral ischemia. Cerebral ischemia was induced in Poldip2+/+ and Poldip2+/- mice and brains were isolated and processed for flow cytometry or RT-PCR. Cultured rat brain microvascular endothelial cells were used to investigate the effect of Poldip2 depletion on focal adhesion kinase (FAK)-mediated VCAM-1 induction. Poldip2 depletion in vivo attenuated the infiltration of myeloid cells, inflammatory monocytes/macrophages and decreased the induction of adhesion molecules. Focusing on VCAM-1, we demonstrated mechanistically that FAK activation was a critical intermediary in Poldip2-mediated VCAM-1 induction. In conclusion, Poldip2 is an important mediator of endothelial dysfunction and leukocyte recruitment. Thus, Poldip2 could be a therapeutic target to improve morbidity following ischemic stroke.


Assuntos
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Quinase 1 de Adesão Focal/metabolismo , AVC Isquêmico/metabolismo , Leucócitos/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Nucleares/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Animais , Isquemia Encefálica/genética , Quinase 1 de Adesão Focal/genética , AVC Isquêmico/genética , Camundongos , Camundongos Mutantes , Proteínas Mitocondriais/genética , Proteínas Nucleares/genética , Molécula 1 de Adesão de Célula Vascular/genética
18.
J Neuroinflammation ; 16(1): 241, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31779628

RESUMO

BACKGROUND: Sepsis-associated encephalopathy (SAE), a diffuse cerebral dysfunction in the absence of direct CNS infection, is associated with increased rates of mortality and morbidity in patients with sepsis. Increased cytokine production and disruption of the blood-brain barrier (BBB) are implicated in the pathogenesis of SAE. The induction of pro-inflammatory mediators is driven, in part, by activation of NF-κΒ. Lipopolysaccharide (LPS), an endotoxin produced by gram-negative bacteria, potently activates NF-κΒ and its downstream targets, including cyclooxygenase-2 (Cox-2). Cox-2 catalyzes prostaglandin synthesis and in the brain prostaglandin, E2 is capable of inducing endothelial permeability. Depletion of polymerase δ-interacting protein 2 (Poldip2) has previously been reported to attenuate BBB disruption, possibly via regulation of NF-κΒ, in response to ischemic stroke. Here we investigated Poldip2 as a novel regulator of NF-κΒ/cyclooxygenase-2 signaling in an LPS model of SAE. METHODS: Intraperitoneal injections of LPS (18 mg/kg) were used to induce BBB disruption in Poldip2+/+ and Poldip2+/- mice. Changes in cerebral vascular permeability and the effect of meloxicam, a selective Cox-2 inhibitor, were assessed by Evans blue dye extravasation. Cerebral cortices of Poldip2+/+ and Poldip2+/- mice were further evaluated by immunoblotting and ELISA. To investigate the role of endothelial Poldip2, immunofluorescence microscopy and immunoblotting were performed to study the effect of siPoldip2 on LPS-mediated NF-κΒ subunit p65 translocation and Cox-2 induction in rat brain microvascular endothelial cells. Finally, FITC-dextran transwell assay was used to assess the effect of siPoldip2 on LPS-induced endothelial permeability. RESULTS: Heterozygous deletion of Poldip2 conferred protection against LPS-induced BBB permeability. Alterations in Poldip2+/+ BBB integrity were preceded by induction of Poldip2, p65, and Cox-2, which was not observed in Poldip2+/- mice. Consistent with these findings, prostaglandin E2 levels were significantly elevated in Poldip2+/+ cerebral cortices compared to Poldip2+/- cortices. Treatment with meloxicam attenuated LPS-induced BBB permeability in Poldip2+/+ mice, while having no significant effect in Poldip2+/- mice. Moreover, silencing of Poldip2 in vitro blocked LPS-induced p65 nuclear translocation, Cox-2 expression, and endothelial permeability. CONCLUSIONS: These data suggest Poldip2 mediates LPS-induced BBB disruption by regulating NF-κΒ subunit p65 activation and Cox-2 and prostaglandin E2 induction. Consequently, targeted inhibition of Poldip2 may provide clinical benefit in the prevention of sepsis-induced BBB disruption.


Assuntos
Barreira Hematoencefálica/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Nucleares/metabolismo , Encefalopatia Associada a Sepse/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/fisiologia , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , NF-kappa B/metabolismo , Proteínas Nucleares/genética , Permeabilidade , Encefalopatia Associada a Sepse/genética , Encefalopatia Associada a Sepse/patologia
19.
Exp Neurol ; 315: 72-81, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30772369

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder that causes progressive dysfunction of dopaminergic and non-dopaminergic neurons, generating motor and nonmotor signs and symptoms. Pain is reported as the most bothersome nonmotor symptom in PD; however, pain remains overlooked and poorly understood. In this study, we evaluated the nociceptive behavior and the descending analgesia circuitry in a rat model of PD. Three independent experiments were performed to investigate: i) thermal nociceptive behavior; ii) mechanical nociceptive behavior and dopaminergic repositioning; and iii) modulation of the pain control circuitry. The rat model of PD, induced by unilateral striatal 6-hydroxydopamine (6-OHDA), did not interfere with thermal nociceptive responses; however, the mechanical nociceptive threshold was decreased bilaterally compared to that of naive or striatal saline-injected rats. This response was reversed by apomorphine or levodopa treatment. Striatal 6-OHDA induced motor impairments and reduced dopaminergic neuron immunolabeling as well as the pattern of neuronal activation (c-Fos) in the substantia nigra ipsilateral (IPL) to the lesion. In the midbrain periaqueductal gray (PAG), 6-OHDA-induced lesion increased IPL and decreased contralateral PAG GABAergic labeling compared to control. In the dorsal horn of the spinal cord, lesioned rats showed bilateral inhibition of enkephalin and µ-opioid receptor labeling. Taken together, we demonstrated that the unilateral 6-OHDA-induced PD model induces bilateral mechanical hypernociception, which is reversed by dopamine restoration, changes in the PAG circuitry, and inhibition of spinal opioidergic regulation, probably due to impaired descending analgesic control. A better understanding of pain mechanisms in PD patients is critical for developing better therapeutic strategies to improve their quality of life.


Assuntos
Corpo Estriado/fisiopatologia , Nociceptividade , Dor/etiologia , Transtornos Parkinsonianos/complicações , Substância Negra/fisiopatologia , Animais , Apomorfina/farmacologia , Comportamento Animal , Agonistas de Dopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Temperatura Alta , Hidroxidopaminas , Masculino , Rede Nervosa/efeitos dos fármacos , Dor/psicologia , Limiar da Dor , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/fisiopatologia , Estimulação Física , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...