Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Glia ; 72(3): 546-567, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37987116

RESUMO

Although brain scars in adults have been extensively studied, there is less data available regarding scar formation during the neonatal period, and the involvement of peripheral immune cells in this process remains unexplored in neonates. Using a murine model of neonatal hypoxic-ischemic encephalopathy (HIE) and confocal microscopy, we characterized the scarring process and examined the recruitment of peripheral immune cells to cortical and hippocampal scars for up to 1 year post-insult. Regional differences in scar formation were observed, including the presence of reticular fibrotic networks in the cortex and perivascular fibrosis in the hippocampus. We identified chemokines with chronically elevated levels in both regions and demonstrated, through a parabiosis-based strategy, the recruitment of lymphocytes, neutrophils, and monocyte-derived macrophages to the scars several weeks after the neonatal insult. After 1 year, however, neutrophils and lymphocytes were absent from the scars. Our data indicate that peripheral immune cells are transient components of HIE-induced brain scars, opening up new possibilities for late therapeutic interventions.


Assuntos
Cicatriz , Hipóxia-Isquemia Encefálica , Adulto , Animais , Humanos , Camundongos , Cicatriz/patologia , Encéfalo/patologia , Macrófagos , Hipóxia-Isquemia Encefálica/patologia
3.
Mol Cell Neurosci ; 124: 103791, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36372156

RESUMO

Some types of peripheral nerve injury lead to limb deafferentation, which leads to remodeling of body representation areas in different parts of the brain, such as in the primary motor cortex and primary sensory cortex. This plasticity is a consequence of several cellular events, such as the emergence and elimination of synapses in these areas. Beside neurons, microglial cells are intimately involved in synapse plasticity, especially in synaptic pruning. In this study, we investigated the transient changes in synaptic density in the primary motor and sensory cortex after different types of peripheral nerve injury, as well as the behavior of microglial cells in each scenario. Male C57/B6 mice were divided into a control group (no injury), sciatic-crush group, and sciatic-transection group, and treated with PBS or minocycline daily for different time points. Both types of sciatic lesion led to a significant decrease of synaptophysin and PSD-95 positive puncta counts compared to control animals 4 days after lesion (DAL), which recovered at 7 DAL and was sustained until 14 DAL. The changes in synaptic puncta density were concomitant with changes in the density and morphology of microglial cells, which were significantly more ramified in the primary motor cortex of injured animals at 1 and 4 DAL. Although the decreased synaptic puncta density overlapped with an increased number of microglial cells, the number of lysosomes per microglial cell did not increase on day 4 after lesion. Surprisingly, daily administration of minocycline increased microglial cell number and PSD-95 positive puncta density by 14 DAL. Taken together, we found evidence for transient changes in synaptic density in the primary motor, related to peripheral injury with possible participation of microglia in this plasticity process.


Assuntos
Córtex Motor , Traumatismos dos Nervos Periféricos , Camundongos , Masculino , Animais , Microglia/patologia , Minociclina/farmacologia , Encéfalo/patologia
4.
Stroke ; 53(2): 586-594, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34794335

RESUMO

BACKGROUND AND PURPOSE: Despite the advances in treating neonatal hypoxic-ischemic encephalopathy (HIE) with induced hypothermia, the rates of severe disability are still high among survivors. Preclinical studies have indicated that cell therapies with hematopoietic stem/progenitor cells could improve neurological outcomes in HIE. In this study, we investigated whether the administration of AMD3100, a CXCR4 antagonist that mobilizes hematopoietic stem/progenitor cells into the circulation, has therapeutic effects in HIE. METHODS: P10 Wistar rats of both sexes were subjected to right common carotid artery occlusion or sham procedure, and then were exposed to hypoxia for 120 minutes. Two subcutaneous injections of AMD3100 or vehicle were given on the third and fourth day after HIE. We first assessed the interindividual variability in brain atrophy after experimental HIE and vehicle treatment in a small cohort of rats. Based on this exploratory analysis, we designed and conducted an experiment to test the efficacy of AMD3100. Brain atrophy on day 21 after HIE was defined as the primary end point. Secondary efficacy end points were cognitive (T-water maze) and motor function (rotarod) on days 17 and 18 after HIE, respectively. RESULTS: AMD3100 did not decrease the brain atrophy in animals of either sex. Cognitive impairments were not observed in the T-water maze, but male hypoxic-ischemic animals exhibited motor coordination deficits on the rotarod, which were not improved by AMD3100. A separate analysis combining data from animals of both sexes also revealed no evidence of the effectiveness of AMD3100 treatment. CONCLUSIONS: These results indicate that the subacute treatment with AMD3100 does not improve structural and functional outcomes in a rat HIE model.


Assuntos
Benzilaminas/uso terapêutico , Ciclamos/uso terapêutico , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Receptores CXCR4/antagonistas & inibidores , Animais , Animais Recém-Nascidos , Atrofia , Benzilaminas/administração & dosagem , Encéfalo/patologia , Disfunção Cognitiva/psicologia , Ciclamos/administração & dosagem , Determinação de Ponto Final , Feminino , Masculino , Aprendizagem em Labirinto , Gravidez , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Wistar , Caracteres Sexuais , Falha de Tratamento
5.
J Nutr Biochem ; 96: 108782, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34038760

RESUMO

Omega-3 (n-3) polyunsaturated fatty acids (PUFA) and the endocannabinoid system (ECS) modulate several functions through neurodevelopment including synaptic plasticity mechanisms. The interplay between n-3PUFA and the ECS during the early stages of development, however, is not fully understood. This study investigated the effects of maternal n-3PUFA supplementation (n-3Sup) or deficiency (n-3Def) on ECS and synaptic markers in postnatal offspring. Female rats were fed with a control, n-3Def, or n-3Sup diet from 15 days before mating and during pregnancy. The cerebral cortex and hippocampus of mothers and postnatal 1-2 days offspring were analyzed. In the mothers, a n-3 deficiency reduced CB1 receptor (CB1R) protein levels in the cortex and increased CB2 receptor (CB2R) in both cortex and hippocampus. In neonates, a maternal n-3 deficiency reduced the hippocampal CB1R amount while it increased CB2R. Additionally, total GFAP isoform expression was increased in both cortex and hippocampus in neonates of the n-3Def group. Otherwise, maternal n-3 supplementation increased the levels of n-3-derived endocannabinoids, DHEA and EPEA, in the cortex and hippocampus and reduced 2-arachidonoyl-glycerol (2-AG) concentrations in the cortex of the offspring. Furthermore, maternal n-3 supplementation also increased PKA phosphorylation in the cortex and ERK phosphorylation in the hippocampus. Synaptophysin immunocontent in both regions was also increased. In vitro assays showed that the increase of synaptophysin in the n-3Sup group was independent of CB1R activation. The findings show that variations in maternal dietary omega-3 PUFA levels may impact differently on the ECS and molecular markers in the cerebral cortex and hippocampus of the progeny.


Assuntos
Endocanabinoides/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Hipocampo/fisiologia , Neocórtex/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Dieta , Feminino , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Gravidez , Ratos , Sinapses/metabolismo
7.
Stem Cells Dev ; 29(9): 586-598, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32160799

RESUMO

Intracerebral hemorrhage (ICH) is as a life-threatening condition that can occur in young adults, often causing long-term disability. Recent preclinical data suggest mesenchymal stromal cell (MSC)-based therapies as promising options to minimize brain damage after ICH. However, therapeutic evidence and mechanistic insights are still limited, particularly when compared with other disorders such as ischemic stroke. Herein, we employed a model of collagenase-induced ICH in young adult rats to investigate the potential therapeutic effects of an intravenous injection of human umbilical cord Wharton's jelly-derived MSCs (hUC-MSCs). Two doses of collagenase were used to cause moderate or severe hemorrhages. Magnetic resonance imaging showed that animals treated with hUC-MSCs after moderate ICH had smaller residual hematoma volumes than vehicle-treated rats, whereas the cell therapy failed to decrease the hematoma volume in animals with a severe ICH. Functional assessments (rotarod and elevated body swing tests) were performed for up to 21 days after ICH. Enduring neurological impairments were seen only in animals subjected to severe ICH, but the cell therapy did not induce statistically significant improvements in the functional recovery. The biodistribution of Technetium-99m-labeled hUC-MSCs was also evaluated, showing that most cells were found in organs such as the spleen and lungs 24 h after transplantation. Nevertheless, it was possible to detect a weak signal in the brain, which was higher in the ipsilateral hemisphere of rats subjected to a severe ICH. These data indicate that hUC-MSCs have moderately beneficial effects in cases of less severe brain hemorrhages in rats by decreasing the residual hematoma volume, and that optimization of the therapy is still necessary.


Assuntos
Hemorragia Cerebral/terapia , Células-Tronco Mesenquimais/citologia , Cordão Umbilical/citologia , Animais , Encéfalo/citologia , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Ratos , Recuperação de Função Fisiológica/fisiologia , Distribuição Tecidual/fisiologia , Geleia de Wharton/citologia
8.
Stem Cells Int ; 2019: 7692973, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31531025

RESUMO

Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are dynamic cells that can sense the environment, adapting their regulatory functions to different conditions. Accordingly, the therapeutic potential of BM-MSCs can be modulated by preconditioning strategies aimed at modifying their paracrine action. Although rat BM-MSCs (rBM-MSCs) have been widely tested in preclinical research, most preconditioning studies have employed human and mouse BM-MSCs. Herein, we investigated whether rBM-MSCs modify their phenotype and paracrine functions in response to Toll-like receptor (TLR) agonists. The data showed that rBM-MSCs expressed TLR3, TLR4, and MDA5 mRNA and were able to internalize polyinosinic-polycytidylic acid (Poly(I:C)), a TLR3/MDA5 agonist. rBM-MSCs were then stimulated with Poly(I:C) or with lipopolysaccharide (LPS, a TLR4 agonist) for 1 h and were grown under normal culture conditions. LPS or Poly(I:C) stimulation did not affect the viability or the morphology of rBM-MSCs and did not modify the expression pattern of key cell surface markers. Poly(I:C) did not induce statistically significant changes in the release of several inflammatory mediators and VEGF by rBM-MSCs, although it tended to increase IL-6 and MCP-1 secretion, whereas LPS increased the release of IL-6, MCP-1, and VEGF, three factors that were constitutively secreted by unstimulated cells. The neurotrophic activity of the conditioned medium from unstimulated and LPS-preconditioned rBM-MSCs was investigated using dorsal root ganglion explants, showing that soluble factors produced by unstimulated and LPS-preconditioned rBM-MSCs can stimulate neurite outgrowth similarly, in a VEGF-dependent manner. LPS-preconditioned cells, however, were slightly more efficient in increasing the number of regrowing axons in a model of sciatic nerve transection in rats. In conclusion, LPS preconditioning boosted the production of constitutively secreted factors by rBM-MSCs, without changing their mesenchymal identity, an effect that requires further investigation in exploratory preclinical studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...