Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Signal Behav ; 19(1): 2298054, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38183219

RESUMO

The use of plant-associated microorganisms is increasingly being investigated as a key tool for mitigating the impact of biotic and abiotic threats to crops and facilitating migration to sustainable agricultural practices. The microbiome is responsible for several functions in agroecosystems, such as the transformation of organic matter, nutrient cycling, and plant/pathogen growth regulation. As climate change and global warming are altering the dynamics of plant-microbial interactions in the ecosystem, it has become essential to perform comprehensive studies to decipher current and future microbial interactions, as their useful symbiotic mechanisms could be better exploited to achieve sustainable agriculture. This will allow for the development of effective microbial inoculants that facilitate nutrient supply for the plant at its minimal energy expense, thus increasing its resilience to biotic and abiotic stresses. This article collection aims to compile state-of-the-art research focused on the elucidation and optimization of symbiotic relationships between crops and their associated microbes. The information presented here will contribute to the development of next-generation microbial inoculants for achieving a more sustainable agriculture.


Assuntos
Microbiota , Simbiose , Produtos Agrícolas , Agricultura , Mudança Climática
2.
Toxins (Basel) ; 13(5)2021 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066812

RESUMO

Aflatoxin B1 is a potent carcinogen produced by Aspergillus flavus, mainly during grain storage. As pre-harvest methods are insufficient to avoid mycotoxin presence during storage, diverse curative techniques are being investigated for the inhibition of fungal growth and aflatoxin detoxification. Streptomyces spp. represent an alternative as they are a promising source of detoxifying enzymes. Fifty-nine Streptomyces isolates and a Streptomyces griseoviridis strain from the commercial product Mycostop®, evaluated against Penicillium verrucosum and ochratoxin A during previous work, were screened for their ability to inhibit Aspergillus flavus growth and decrease the aflatoxin amount. The activities of bacterial cells and cell-free extracts (CFEs) from liquid cultures were also evaluated. Fifty-eight isolates were able to inhibit fungal growth during dual culture assays, with a maximal reduction going down to 13% of the control. Aflatoxin-specific production was decreased by all isolates to at least 54% of the control. CFEs were less effective in decreasing fungal growth (down to 40% and 55% for unheated and heated CFEs, respectively) and aflatoxin-specific production, with a few CFEs causing an overproduction of mycotoxins. Nearly all Streptomyces isolates were able to degrade AFB1 when growing in solid and liquid media. A total degradation of AFB1 was achieved by Mycostop® on solid medium, as well as an almost complete degradation by IX20 in liquid medium (6% of the control). CFE maximal degradation went down to 37% of the control for isolate IX09. The search for degradation by-products indicated the presence of a few unknown molecules. The evaluation of residual toxicity of the tested isolates by the SOS chromotest indicated a detoxification of at least 68% of AFB1's genotoxicity.


Assuntos
Aflatoxina B1/toxicidade , Aspergillus flavus/crescimento & desenvolvimento , Streptomyces/metabolismo , Aspergillus flavus/metabolismo , Carcinógenos/toxicidade , Descontaminação , Ocratoxinas/metabolismo , Penicillium/metabolismo
3.
Toxins (Basel) ; 12(5)2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380688

RESUMO

Ochratoxin A (OTA) is a secondary metabolite produced by fungal pathogens such as Penicilliumverrucosum, which develops in food commodities during storage such as cereals, grapes, and coffee. It represents public health concerns due to its genotoxicity, carcinogenicity, and teratogenicity. The objective of this study was to evaluate the ability of actinobacteria and their metabolites to degrade OTA and/or to decrease its production. Sixty strains of actinobacteria were tested for their ability to prevent OTA formation by in vitro dual culture assays or with cell free extracts (CFEs). In dual culture, 17 strains strongly inhibited fungal growth, although it was generally associated with an increase in OTA specific production. Seventeen strains inhibited OTA specific production up to 4% of the control. Eleven actinobacteria CFEs reduced OTA specific production up to 62% of the control, while no substantial growth inhibition was observed except for two strains up to 72% of the control. Thirty-three strains were able to degrade OTA almost completely in liquid medium whereas only five were able to decrease it on solid medium, and two of them reduced OTA to an undetectable amount. Our results suggest that OTA decrease could be related to different strategies of degradation/metabolization by actinobacteria, through enzyme activities and secretion of secondary metabolites interfering with the OTA biosynthetic pathway. CFEs appeared to be ineffective at degrading OTA, raising interesting questions about the detoxification mechanisms. Common degradation by-products (e.g., OTα or L-ß-phenylalanine) were searched by HPLC-MS/MS, however, none of them were found, which implies a different mechanism of detoxification and/or a subsequent degradation into unknown products.


Assuntos
Actinobacteria/metabolismo , Descontaminação , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos , Fungos/metabolismo , Ocratoxinas/metabolismo , Actinobacteria/classificação , Biodegradação Ambiental , Vias Biossintéticas , Fungos/crescimento & desenvolvimento , Inativação Metabólica , Metabolismo Secundário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...