Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Rev Anal Chem (Palo Alto Calif) ; 16(1): 401-428, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37068748

RESUMO

This article critically reviews analytical method validation and quality control applied to the environmental chemistry field. The review focuses on the determination of organic micropollutants (OMPs), specifically emerging contaminants and pesticides, in the aquatic environment. The analytical technique considered is (gas and liquid) chromatography coupled to mass spectrometry (MS), including high-resolution MS for wide-scope screening purposes. An analysis of current research practices outlined in the literature has been performed, and key issues and analytical challenges are identified and critically discussed. It is worth emphasizing the lack of specific guidelines applied to environmental analytical chemistry and the minimal regulation of OMPs in waters, which greatly affect method development and performance, requirements for method validation, and the subsequent application to samples. Finally, a proposal is made for method validation and data reporting, which can be understood as starting points for further discussion with specialists in environmental analytical chemistry.

2.
Water Res ; 223: 119020, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36049245

RESUMO

Wastewater analysis of Δ9-tetrahydrocannabinol (THC) biomarkers can provide essential information on trends in cannabis consumption. Although analysis is mostly focused on the aqueous phase, previous studies have illustrated the need of improving the measurements of raw influent wastewater (IWW) considering also suspended solids. This is important for cannabis biomarkers, because a substantial part of them is expected to be found in the suspended solids due to their more lipophilic character compared with other metabolites/drugs included in these types of studies. However, it remains open to which extent trend estimates might be affected by solely analysing the liquid phase. To investigate this aspect, robust analytical methodologies are required to measure both the liquid and solid phases of IWW. In this work, we firstly tested liquid-liquid extraction (LLE) for THC and its major metabolites (THCOH, and THCCOOH). Using LLE, no filtration or centrifugation step was required for raw IWW analysis, and the three analytes were extracted from both the liquid and the solid phase simultaneously. In parallel, the raw IWW was centrifuged and the obtained solid and liquid phases were analyzed separately: the liquid phase by both LLE and solid phase extraction (SPE) for comparison of data, and the suspended solids by solid-liquid extraction (SLE). The separate analysis of both phases in a number of samples revealed that a significant amount of cannabis biomarkers (ranging from 42 to 90%) was found in the suspended solids. In addition, the total amount of cannabis biomarkers obtained by analysing raw IWW on the one hand, and by separate analysis of the liquid and the solid phases, on the other hand, was in good agreement. Data from this study show that the sole analysis of the liquid phase would lead to a notable underestimation of cannabis biomarkers concentrations in IWW.


Assuntos
Cannabis , Águas Residuárias , Biomarcadores , Cannabis/metabolismo , Dronabinol/análise , Dronabinol/metabolismo , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos , Águas Residuárias/análise
3.
Chemosphere ; 307(Pt 1): 135684, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35850214

RESUMO

Wastewater-based epidemiology (WBE) relies on the assessment and interpretation of levels of biomarkers in wastewater originating from a well-defined community. It has provided unique information on spatial and temporal trends of licit and illicit drug consumption, and has also the potential to give complementary information on human exposure to chemicals. Here, we focus on the accurate quantification of pesticide biomarkers (i.e., predominantly urinary metabolites) in influent wastewater at the ng L-1 level to be used for WBE. In the present study, an advanced analytical methodology has been developed based on ultra-high-pressure liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS), for the simultaneous determination of 11 specific human biomarkers of triazines, urea herbicides, pyrethroids and organophosphates in urban wastewater. The sample treatment consisted of solid-phase extraction using Oasis HLB cartridges. Direct injection of the samples was also tested for all compounds, as a simple and rapid way to determine these compounds without sample manipulation (i.e., minimizing potential analytical errors). However, if extraction recoveries are satisfactory, SPE is the preferred approach that allow reaching lower concertation levels. Six isotopically labelled internal standards were evaluated and used to correct for matrix effects. Due to the difficulties associated with this type of analysis, special emphasis has been placed on the analytical challenges encountered. The satisfactory validated methodology was applied to urban wastewater samples collected from different locations across Europe revealing the presence of 2,6-EA, 3,4-DCA, 3-PBA and 4-HSA i.e, metabolites of metolachlor-s, urea herbicides, pyrethroids and chlorpropham, respectively. Preliminary data reported in this paper illustrate the applicability of this analytical approach for assessing human exposure to pesticides through WBE.


Assuntos
Herbicidas , Drogas Ilícitas , Praguicidas , Piretrinas , Poluentes Químicos da Água , Biomarcadores , Clorprofam , Cromatografia Líquida de Alta Pressão/métodos , Herbicidas/análise , Humanos , Drogas Ilícitas/análise , Organofosfatos , Praguicidas/análise , Piretrinas/análise , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos , Triazinas/análise , Ureia , Águas Residuárias/química , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 847: 157222, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35901880

RESUMO

Already in early 2000s, concerns have been growing in the EU about increasing use of cocaine and it is estimated that below 1 % of the population administer the drug by smoking crack cocaine. New available data suggests an increase in the use of crack cocaine and an increase in the number of crack cocaine users entering treatment has been reported in several European countries. Robust estimations of crack cocaine use are however not available yet. The use of crack cocaine has long been associated with severe adverse socio-economic conditions as well as mental health problems, such as suicide ideation and depression. The aim of this study was to assess spatial trends in population-normalized mass loads of crack cocaine biomarkers (i.e., anhydroecgonine and anhydroecgonine methyl ester) in 13 European cities in six countries (the Netherlands, Belgium, Ireland, Portugal, Spain and Italy). Furthermore, temporal trends over a five-year period were evaluated through the analysis of historic samples collected in the Netherlands. Finally, the stability of the crack cocaine biomarkers in wastewater was investigated through batch experiments. The samples were analyzed with a new developed and validated hydrophilic interaction liquid chromatography coupled to mass spectrometry method. Targeted crack cocaine biomarkers were found in all cities. Also, crack cocaine biomarker was detected in wastewater from 2017 to 2021 in the Netherlands, but no significance between the years were found. With respect to biomarker in-sample stability, AEME was found to be stable in wastewater. This study assessed crack cocaine use for the first time on a broad scale, both temporal and in cities across Europe, with wastewater-based epidemiology and it shows the importance of wastewater analysis to monitor community loads of crack cocaine use.


Assuntos
Cocaína , Cocaína Crack , Biomarcadores , Cidades/epidemiologia , Cocaína/análise , Cocaína Crack/análise , Humanos , Águas Residuárias/análise , Vigilância Epidemiológica Baseada em Águas Residuárias
5.
Environ Int ; 153: 106540, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33838618

RESUMO

The COVID-19 outbreak has forced countries to introduce severe restrictive measures to contain its spread. In particular, physical distancing and restriction of movement have had important consequences on human behaviour and potentially also on illicit drug use and supply. These changes can be associated with additional risks for users, in particular due to reduced access to prevention and harm reduction activities. Furthermore, there have been limitations in the amount of data about drug use which can be collected due to restrictions. To goal of this study was to obtain information about potential changes in illicit drug use impacted by COVID-19 restrictions. Wastewater samples were collected in seven cities in the Netherlands, Belgium, Spain and Italy at the beginning of lockdowns (March-May 2020). Using previously established and validated methods, levels of amphetamine (AMP), methamphetamine (METH), MDMA, benzoylecgonine (BE, the main metabolite of cocaine) and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH, main metabolite of tetrahydrocannabinol (THC)) were measured and compared with findings from previous years. Important differences in levels of consumed drugs were observed across the considered countries. Whilst for some substances and locations, marked decreases in consumption could be observed (e.g., 50% decrease in MDMA levels compared to previous years). In some cases, similar or even higher levels compared to previous years could be found. Changes in weekly patterns were also observed, however these were not clearly defined for all locations and/or substances. Findings confirm that the current situation is highly heterogeneous and that it remains very difficult to explain and/or predict the effect that the present pandemic has on illicit drug use and availability. However, given the current difficulty in obtaining data due to restrictions, wastewater analysis can provide relevant information about the situation at the local level, which would be hard to obtain otherwise.


Assuntos
COVID-19 , Drogas Ilícitas , Transtornos Relacionados ao Uso de Substâncias , Poluentes Químicos da Água , Bélgica , Cidades , Controle de Doenças Transmissíveis , Humanos , Itália , Países Baixos , SARS-CoV-2 , Espanha , Detecção do Abuso de Substâncias , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Águas Residuárias/análise , Poluentes Químicos da Água/análise
6.
Environ Sci Pollut Res Int ; 28(19): 24008-24022, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33415630

RESUMO

In this work, the activated persulfate oxidation of ciprofloxacin (CIP) using a low-grade titanium ore under sunlight or simulated sunlight were conducted to analyze the CIP degradation efficiency and to identify the transformation products (TPs) generated during oxidation under both types of irradiation sources by using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). All advance oxidation process experiments were performed in a 2700-mL raceway reactor at a pH value of ~ 6.5 and an initial CIP concentration of 1 mg/L, during 90 min of reaction time. The control experiments carried out under simulated sunlight achieved a 97.7 ± 0.6% degradation efficiency, using 385 W/m2 of irradiation with an average temperature increase of 11.7 ± 0.6 °C. While, the experiments under sunlight reached a 91.2 ± 1.3% degradation efficiency, under an average irradiation value of 19.2 ± 0.3 W/m2 in October-November 2019 at hours between 11:00 am and 3:00 pm with an average temperature increase of 1.4 ± 0.8 °C. Mass spectrometry results indicated that 14 of the 108 possible TPs reported in the literature were detected. The calculated exact mass, measured accurate mass, and its characteristic diagnostic fragment ions were listed, and two new TPs were tentative identified. The TP generation analysis showed that some specific compounds were detected in different time intervals with kinetic variations depending on the irradiation used. Consequently, two CIP degradation pathways were proposed, since the type of irradiation determines the CIP degradation mechanism. Graphical abstract.


Assuntos
Ciprofloxacina , Poluentes Químicos da Água , Cromatografia Líquida , Oxirredução , Luz Solar , Titânio , Poluentes Químicos da Água/análise
7.
Environ Pollut ; 265(Pt A): 114722, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32454378

RESUMO

This work discusses the identification of the transformation products (TPs) generated during the photolytic degradation of dextromethorphan (DXM) and its metabolite dextrorphan (DXO), under simulated solar radiation in aqueous solutions (Milli-Q water and river water) in order to determinate its behavior into the aquatic environment. Tentative identification of the TPs was performed by liquid chromatography/quadrupole time-of-flight mass spectrometry (LC/QTOF-MS), following a suspect screening approach. The use of high resolution-mass spectrometry (HRMS) allowed the tentative identification of DXM and DXO photoproducts based on the structure proposed by an in silico software, the accurate mass measurement, the MS/MS fragmentation pattern and the molecular formula finding. A total of 19 TPs were found to match some of the accurate masses included in a suspect list, and they were all tentatively identified by their characteristic MS-MS fragments. Most of the TPs identified showed a minor modified molecular structure like the introduction of hydroxyl groups, or demethylation. The time-evolution of precursors and TPs were monitored throughout the experiments, and degradation kinetics were presented for each analyte. Finally, the occurrence of DXM, DXO, and their tentatively proposed photodegradation TPs was evaluated in both surface and wastewater. In all real matrices, the results showed that the highest concentration was detected for DXO, followed by TP-244 (N-desmethyldextrorphan) and DXM.


Assuntos
Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise , Cromatografia Líquida , Dextrometorfano , Dextrorfano , Fotólise , Águas Residuárias
8.
Chemosphere ; 232: 152-163, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31154175

RESUMO

Agriculture is considered as the main source of water contamination by pesticides. However, food packaging or processing industries are also recognised as relevant point sources of contamination by these compounds, not yet investigated in depth. The objective of this work has been to improve current knowledge about the presence and concentration of pesticides in the effluent of a food processing industry, as well as to investigate their main transformation products (TPs). An analytical strategy combining target and suspect analysis has been applied to provide an evaluation of the effluents. The methodology involves solid-phase extraction (SPE) of wastewater samples followed by (i) liquid chromatography quadrupole-linear ion trap tandem mass spectrometry (LC-QqLIT-MS/MS) for quantitative target analysis and (ii) liquid chromatography coupled to quadrupole-time-of-flight high resolution mass spectrometry (LC-QTOF-HRMS) to identify non-target pesticides and possible TPs. The results revealed the presence of 17 of the target pesticides analysed and 3 additional ones as a result of the suspect screening performed by HRMS. The TPs were investigated for the pesticides found at the highest concentrations: imazalil (7038-19802 ng/L), pyrimethanil (744-9591 ng/L) and thiabendazole (341-926 ng/L). Up to 14 TPs could be tentatively identified, demonstrating the relevance of this type of studies. These data provide a better understanding of the occurrence of pesticides and their TPs in agro-food industrial effluents.


Assuntos
Praguicidas/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Agricultura , Cromatografia Líquida/métodos , Monitoramento Ambiental , Indústria Alimentícia , Indústria de Processamento de Alimentos , Extração em Fase Sólida , Espectrometria de Massas em Tandem/métodos , Tiabendazol/análise , Águas Residuárias/análise , Poluição Química da Água/estatística & dados numéricos
9.
Sci Total Environ ; 664: 874-884, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30769311

RESUMO

Opioids, both as prescription drugs and abuse substances, have been a hot topic and a focus of discussion in the media for the last few years. Although the literature published shows the occurrence of opioids and some of their metabolites in the aquatic environment, there are scarce data in the application of high resolution mass spectrometry (HRMS) for the analysis of these compounds in the environment. The use of HRMS allows increasing the number of opioids that can be studied as well as the detection of unknown opioids, their metabolites and potential transformation products. In this work, a retrospective analysis for the identification of opioids and their metabolites using a curated database was applied to surface water and wastewater samples taken in the state of Minnesota (U.S.) in 2009, which were previously analyzed by liquid chromatography/time-of-flight mass spectrometry (LC/TOF-MS) for antidepressants. The database comprised >200 opioids including natural opiates (e.g. morphine and codeine), their semi-synthetic derivatives (e.g. heroin, hydromorphone, hydrocodone, oxycodone, oxymorphone, meperidine and buprenorphine), fully synthetic opioids (e.g. fentanyl, methadone, tramadol, dextromethorphan and propoxyphene), as well as some of their metabolites (e.g. 6-monoacetylcodeine, dextrorphan, EDDP, normorphine and O-desmethyltramadol). Moreover, additional MS-MS experiments were performed to confirm their identification, as well as to recognize fragmentation patterns and diagnostic ions for several opioids. These data provide a better understanding of the historical occurrence of opioids and their metabolites in surface waters impacted by wastewater sources. The concentrations of individual opioids in surface water and wastewater effluent varied from 8.8 (EDDP) to 1640 (tramadol) ngL-1 and from 12 (dihydrocodeine) to 1288 (tramadol) ngL-1, respectively. The opioids with higher overall frequency detections were tramadol, dextromethorphan and its metabolite, dextrorphan.


Assuntos
Analgésicos Opioides/análise , Monitoramento Ambiental , Águas Residuárias/química , Poluentes Químicos da Água/análise , Cromatografia Líquida , Codeína/análogos & derivados , Análise de Dados , Fentanila , Heroína , Hidrocodona , Hidromorfona , Minnesota , Morfina , Derivados da Morfina , Oxicodona , Estudos Retrospectivos , Detecção do Abuso de Substâncias , Espectrometria de Massas em Tandem , Tramadol/análogos & derivados
10.
J Chromatogr A ; 1507: 84-94, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28583389

RESUMO

It is well known that wastewater treatment plant (WWTP) effluents usually contain micropollutants such as pharmaceuticals (or their transformation products, TPs) or pesticides, which is a major issue when evaluating their possible reuse (e.g. for irrigation in agriculture). In search for an improved accuracy and simplicity, methods based on the direct injection of the sample (DI) represent a recent trend taking advantage of the increasing sensitivity of new mass spectrometry (MS) instruments. Thus, the present study shows the development and validation of a DI-based method by ultra-high-performance liquid chromatography quadrupole-linear ion trap analyser (UHPLC-QqLIT-MS/MS). The proposed method was applied to the monitoring of 115 organic microcontaminants (including pharmaceuticals, TPs and pesticides) at the ngL-1/µgL-1 level in wastewater effluents from urban WWTPs. Sample pre-treatment was reduced to acetonitrile addition and filtration of the mixture previous to LC-MS analysis. Total analysis time was <15min. A subsequent validation protocol was carried out in treated WW (TWW), following indications of SANTE and Eurachem Guidelines. Linearity and matrix effect were evaluated in the range of 10-1000ngL-1. 70% of the analytes showed a moderate matrix effect (≤25%). Trueness (expressed as recovery) and precision (calculated as relative standard deviation, RSD) were evaluated at four concentration levels (20, 50, 500 and 1000ngL-1) in TWW samples. The LODs ranged from 1 to 357ngL-1 and the LOQs from 10 to 500ngL-1. 92% of the compounds showed limits of quantification ≤100ngL-1. In most cases, mean recoveries were in the range 70-120%, and RSD values were ≤20%. The validated method was successfully applied to the analysis of 10 TWW samples, demonstrating the occurrence of 67 target compounds at concentration levels from 26705ngL-1 (4-aminoantipyrine) to 10ngL-1 (tebuconazole and bezafibrate).


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Praguicidas/análise , Espectrometria de Massas em Tandem/métodos , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Cromatografia Líquida de Alta Pressão/instrumentação , Limite de Detecção , Praguicidas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...