Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6780, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117620

RESUMO

Skyrmions are topologically protected, vortex-like structures found in various condensed-matter systems including helical ferromagnets and liquid crystals, typically arising from chiral interactions. Using extensive particle-based simulations, we demonstrate that non-chiral hard banana-shaped particles, governed solely by excluded-volume interactions, spontaneously stabilize skyrmion structures through the bend-flexoelectric effect. Under thin confinement, we observe the formation of quasi-2D layers of isolated skyrmions or dense skyrmion lattices. These structures, comprising a racemic mixture of left- and right-handed skyrmions, show resilience against thermal fluctuations while remaining responsive to external fields, offering intriguing possibilities for manipulation. We also find that the size of these skyrmions can be adjusted by the dimensions and curvature of the banana-shaped particles. In the absence of geometric frustration due to confinement, a blue phase III may emerge, characterized by a 3D network of chiral skyrmion filaments of the nematic director field within an isotropic background. Our findings provide valuable insights into stabilizing skyrmion lattices and blue phases, showcasing non-Gaussian fluid-like dynamics in systems of achiral hard particles. Furthermore, they highlight the remarkable capacity of these complex fluids in designing advanced functional materials with diverse applications in photonics and memory devices.

2.
Soft Matter ; 20(15): 3271-3282, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38456237

RESUMO

Macromolecular crowding can induce the collapse of a single long polymer into a globular form due to depletion forces of entropic nature. This phenomenon has been shown to play a significant role in compacting the genome within the bacterium Escherichia coli into a well-defined region of the cell known as the nucleoid. Motivated by the biological significance of this process, numerous theoretical and computational studies have searched for the primary determinants of the behavior of polymer-crowder phases. However, our understanding of this process remains incomplete and there is debate on a quantitatively unified description. In particular, different simulation studies with explicit crowders have proposed different order parameters as potential predictors for the collapse transition. In this work, we present a comprehensive analysis of published simulation data obtained from different sources. Based on the common behavior we find in this data, we develop a unified phenomenological model that we show to be predictive. Finally, to further validate the accuracy of the model, we conduct new simulations on polymers of various sizes, and investigate the role of jamming of the crowders.


Assuntos
Simulação de Dinâmica Molecular , Polímeros , Substâncias Macromoleculares
3.
ACS Nano ; 17(23): 23391-23404, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38011344

RESUMO

Colloidal nanoparticles self-assemble into a variety of superstructures with distinctive optical, structural, and electronic properties. These nanoparticles are usually stabilized by a capping layer of organic ligands to prevent aggregation in the solvent. When the ligands are sufficiently long compared to the dimensions of the nanocrystal cores, the effective coarse-grained forces between pairs of nanoparticles are largely affected by the presence of neighboring particles. In order to efficiently investigate the self-assembly behavior of these complex colloidal systems, we propose a machine-learning approach to construct effective coarse-grained many-body interaction potentials. The multiscale methodology presented in this work constitutes a general bottom-up coarse-graining strategy where the coarse-grained forces acting on coarse-grained sites are extracted from measuring the vectorial mean forces on these sites in reference fine-grained simulations. These effective coarse-grained forces, i.e., gradients of the potential of mean force or of the free-energy surface, are represented by a simple linear model in terms of gradients of structural descriptors, which are scalar functions that are rotationally invariant. In this way, we also directly obtain the free-energy surface of the coarse-grained model as a function of all coarse-grained coordinates. We expect that this simple yet accurate coarse-graining framework for the many-body potential of mean force will enable the characterization, understanding, and prediction of the structure and phase behavior of relevant soft-matter systems by direct simulations. The key advantage of this method is its generality, which allows it to be applicable to a broad range of systems. To demonstrate the generality of our method, we also apply it to a colloid-polymer model system, where coarse-grained many-body interactions are pronounced.

4.
J Chem Phys ; 157(2): 024902, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35840375

RESUMO

Spherically symmetric atom-centered descriptors of atomic environments have been widely used for constructing potential or free energy surfaces of atomistic and colloidal systems and to characterize local structures using machine learning techniques. However, when particle shapes are non-spherical, as in the case of rods and ellipsoids, standard spherically symmetric structure functions alone produce imprecise descriptions of local environments. In order to account for the effects of orientation, we introduce two- and three-body orientation-dependent particle-centered descriptors for systems composed of rod-like particles. To demonstrate the suitability of the proposed functions, we use an efficient feature selection scheme and simple linear regression to construct coarse-grained many-body interaction potentials for computationally efficient simulations of model systems consisting of colloidal particles with an anisotropic shape: mixtures of colloidal rods and non-adsorbing polymer coils, hard rods enclosed by an elastic microgel shell, and ligand-stabilized nanorods. We validate the machine-learning (ML) effective many-body potentials based on orientation-dependent symmetry functions by using them in direct coexistence simulations to map out the phase behavior of colloidal rods and non-adsorbing polymer coils. We find good agreement with the results obtained from simulations of the true binary mixture, demonstrating that the effective interactions are well described by the orientation-dependent ML potentials.

5.
J Chem Phys ; 155(17): 174902, 2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34742191

RESUMO

Simulations of colloidal suspensions consisting of mesoscopic particles and smaller species such as ions or depletants are computationally challenging as different length and time scales are involved. Here, we introduce a machine learning (ML) approach in which the degrees of freedom of the microscopic species are integrated out and the mesoscopic particles interact with effective many-body potentials, which we fit as a function of all colloid coordinates with a set of symmetry functions. We apply this approach to a colloid-polymer mixture. Remarkably, the ML potentials can be assumed to be effectively state-independent and can be used in direct-coexistence simulations. We show that our ML method reduces the computational cost by several orders of magnitude compared to a numerical evaluation and accurately describes the phase behavior and structure, even for state points where the effective potential is largely determined by many-body contributions.

6.
Phys Rev Lett ; 126(15): 158001, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33929217

RESUMO

Using computer simulations, we investigate the phase behavior of hard-core spherocylinders with a length-to-diameter ratio L/σ=5 and coated by a soft deformable corona of length λ/σ=1.35. When quasi-two-dimensional layers are formed in smectic and solid phases at low temperatures, the competition between the two intrinsic length scales of the parallel aligned particles leads to the stabilization of different in-plane lattices of nonconventional symmetry, including low-density hexagonal, square, and high-density hexagonal crystals, as well as an intriguing dodecagonal quasicrystal. Our Letter opens up the opportunity to control the assembly of anisotropic nanoparticles into structures with preengineered symmetry-dependent physical properties.

7.
J Colloid Interface Sci ; 572: 133-140, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32240786

RESUMO

Poly(ethylene oxide)-b-poly(butylmethacrylate) (PEO-b-PBMA) copolymers have recently been identified as excellent building blocks for the synthesis of hierarchical nanoporous materials. Nevertheless, while experiments have unveiled their potential to form bicontinuous phases and vesicles, a general picture of their phase and aggregation behavior is still missing. By performing Molecular Dynamics simulations, we here apply our recent coarse-grained model of PEO-b-PBMA to investigate its self-assembly in water and tetrahydrofuran (THF) and unveil the occurrence of a wide spectrum of mesophases. In particular, we find that the morphological phase diagram of this ternary system incorporates bicontinuous and lamellar phases at high copolymer concentrations, and finite-size aggregates, such as dispersed sheets or disk-like aggregates, spherical vesicles and rod-like vesicles, at low copolymer concentrations. The morphology of these mesophases can be controlled by tuning the THF/water relative content, which has a striking effect on the kinetics of self-assembly as well as on the resulting equilibrium structures. Our results disclose the fascinating potential of PEO-b-PBMA copolymers for the templated synthesis of nanostructured materials and offer a guideline to fine-tune their properties by accurately selecting the THF/water ratio.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...