Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 10(3): 423-438, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38337039

RESUMO

Centromeres strongly affect (epi)genomic architecture and meiotic recombination dynamics, influencing the overall distribution and frequency of crossovers. Here we show how recombination is regulated and distributed in the holocentric plant Rhynchospora breviuscula, a species with diffused centromeres. Combining immunocytochemistry, chromatin analysis and high-throughput single-pollen sequencing, we discovered that crossover frequency is distally biased, in sharp contrast to the diffused distribution of hundreds of centromeric units and (epi)genomic features. Remarkably, we found that crossovers were abolished inside centromeric units but not in their proximity, indicating the absence of a canonical centromere effect. We further propose that telomere-led synapsis of homologues is the feature that best explains the observed recombination landscape. Our results hint at the primary influence of mechanistic features of meiotic pairing and synapsis rather than (epi)genomic features and centromere organization in determining the distally biased crossover distribution in R. breviuscula, whereas centromeres and (epi)genetic properties only affect crossover positioning locally.


Assuntos
Pareamento Cromossômico , Recombinação Homóloga , Centrômero/genética
2.
Methods Mol Biol ; 2590: 201-218, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36335501

RESUMO

Haplotype-resolved genome assemblies remain a challenge in practice. Here, we provide a step-by-step guide on gamete binning, a method to generate haplotype-resolved genome assemblies for diploid species. The protocol starts by phasing heterozygous variants to individual haplotypes of specific chromosomes using the genome information of individual haploid gametes of the focal individual. Using phased variants, the whole-genome sequencing reads from the diploid genome can be genotyped and assigned into groups, which represent the individual haplotypes of each of the chromosomes. Finally, haplotype-specific chromosomes can be assembled independently using standard assembly tools. First applications of gamete binning revealed a haplotyping accuracy over 99%, which outperformed sequence-only or Hi-C-based haplotype-resolved genome assemblies.Availability: github.com/schneebergerlab/GameteBinning_prac .


Assuntos
Diploide , Genoma , Haplótipos/genética , Sequenciamento Completo do Genoma , Células Germinativas , Análise de Sequência de DNA
3.
Nat Genet ; 54(3): 342-348, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241824

RESUMO

Potato is the most widely produced tuber crop worldwide. However, reconstructing the four haplotypes of its autotetraploid genome remained an unsolved challenge. Here, we report the 3.1 Gb haplotype-resolved (at 99.6% precision), chromosome-scale assembly of the potato cultivar 'Otava' based on high-quality long reads, single-cell sequencing of 717 pollen genomes and Hi-C data. Unexpectedly, ~50% of the genome was identical-by-descent due to recent inbreeding, which was contrasted by highly abundant structural rearrangements involving ~20% of the genome. Among 38,214 genes, only 54% were present in all four haplotypes with an average of 3.2 copies per gene. Taking the leaf transcriptome as an example, 11% of the genes were differently expressed in at least one haplotype, where 25% of them were likely regulated through allele-specific DNA methylation. Our work sheds light on the recent breeding history of potato, the functional organization of its tetraploid genome and has the potential to strengthen the future of genomics-assisted breeding.


Assuntos
Solanum tuberosum , Tetraploidia , Alelos , Cromossomos , Haplótipos/genética , Melhoramento Vegetal , Solanum tuberosum/genética
4.
Genome Biol ; 21(1): 306, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33372615

RESUMO

Generating chromosome-level, haplotype-resolved assemblies of heterozygous genomes remains challenging. To address this, we developed gamete binning, a method based on single-cell sequencing of haploid gametes enabling separation of the whole-genome sequencing reads into haplotype-specific reads sets. After assembling the reads of each haplotype, the contigs are scaffolded to chromosome level using a genetic map derived from the gametes. We assemble the two genomes of a diploid apricot tree based on whole-genome sequencing of 445 individual pollen grains. The two haplotype assemblies (N50: 25.5 and 25.8 Mb) feature a haplotyping precision of greater than 99% and are accurately scaffolded to chromosome-level.


Assuntos
Cromossomos , Genoma , Células Germinativas , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Diploide , Tamanho do Genoma , Haploidia , Heterozigoto , Brotos de Planta , Pólen/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Espanha , Sequenciamento Completo do Genoma
5.
Front Plant Sci ; 8: 800, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28579996

RESUMO

Almond and sweet cherry are two economically important species of the Prunus genus. They both produce the cyanogenic glucosides prunasin and amygdalin. As part of a two-component defense system, prunasin and amygdalin release toxic hydrogen cyanide upon cell disruption. In this study, we investigated the potential role within prunasin and amygdalin and some of its derivatives in endodormancy release of these two Prunus species. The content of prunasin and of endogenous prunasin turnover products in the course of flower development was examined in five almond cultivars - differing from very early to extra-late in flowering time - and in one sweet early cherry cultivar. In all cultivars, prunasin began to accumulate in the flower buds shortly after dormancy release and the levels dropped again just before flowering time. In almond and sweet cherry, the turnover of prunasin coincided with increased levels of prunasin amide whereas prunasin anitrile pentoside and ß-D-glucose-1-benzoate were abundant in almond and cherry flower buds at certain developmental stages. These findings indicate a role for the turnover of cyanogenic glucosides in controlling flower development in Prunus species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...