Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(4)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37106828

RESUMO

The high value of black truffle recompenses the slow growth of the fungus when established in the field. Adding a secondary crop, such as medicinal and aromatic plants (MAPs), could further enhance the sustainability of truffle production agro-forest systems. The dual cultures of ectomycorrhizal truffle-oak seedlings and MAPs (lavender, thyme, and sage) previously inoculated and non-inoculated with native arbuscular mycorrhizal fungi (AMF), were established to evaluate plant-fungi relationships. After 12 months in a shadehouse, plants' growth, mycorrhizal colonization, and extraradical soil mycelium (both of Tuber melanosporum and AMF) were measured. Overall, truffle-oaks' growth was negatively affected by the presence of MAPs, especially when inoculated with AMF. In turn, the presence of truffle-oaks barely affected the co-cultured MAPs, and only lavenders showed a significant growth reduction. All AMF-inoculated MAPs showed higher shoot and root biomass than non-inoculated ones. Compared to truffle-oaks growing alone, the presence of co-cultured MAPs, especially when they were AMF-inoculated, significantly decreased both the ectomycorrhizas and soil mycelium of T. melanosporum. These results reveal the strong competition between AMF and T. melanosporum and warn about the need for the protection of intercropping plants and their associated symbiotic fungi to avoid reciprocal counterproductive effects in mixed truffle-oak-AMF-MAP plantations.

2.
J Sci Food Agric ; 99(6): 2966-2973, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30478939

RESUMO

BACKGROUND: Rosemary forms an arbuscular mycorrhizal (AM) symbiosis with a group of soilborne fungi belonging to the phylum Glomeromycota, which can modify the plant metabolome responsible for the antioxidant capacity and other health beneficial properties of rosemary. RESULTS: The effect of inoculating rosemary plants with an AM fungus on their growth via their polyphenolic fingerprinting was evaluated after analyzing leaf extracts from non-inoculated and inoculated rosemary plants by ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS). Plant growth parameters indicated that mycorrhizal inoculation significantly increased plant height and biomass. Chemical modifications in the plant polyphenolic profile distribution were found after a principal components analysis (PCA) loading plots study. Four compounds hosting strong antioxidant properties - ferulic acid, asiatic acid, carnosol, and vanillin - were related to mycorrhizal rosemary plants while caffeic and chlorogenic acids had a higher influence on non-mycorrhizal plants. CONCLUSION: Mycorrhization was found to stimulate growth to obtain a higher biomass of plant leaves in a short time, avoiding chemical fertilization, while analytical results demonstrate that there is an alteration in the distribution of polyphenols in plants colonized by the symbiotic fungus, which can be related to an improvement in nutritional properties with future industrial significance. © 2018 Society of Chemical Industry.


Assuntos
Inoculantes Agrícolas/fisiologia , Glomeromycota/fisiologia , Micorrizas/fisiologia , Folhas de Planta/química , Polifenóis/química , Rosmarinus/química , Folhas de Planta/metabolismo , Raízes de Plantas/microbiologia , Polifenóis/metabolismo , Rosmarinus/crescimento & desenvolvimento , Rosmarinus/microbiologia , Rosmarinus/fisiologia , Simbiose
3.
Mycorrhiza ; 18(4): 211-216, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18338184

RESUMO

Two indigenous arbuscular mycorrhizal (AM) fungi from the Mediterranean wine growing area in the Northeast of Spain were isolated and classified as Glomus intraradices Schenck & Smith. Both native fungi were found to increase the growth of the vine rootstock 110 Richter under greenhouse conditions compared with G. intraradices (BEG 72) and a phosphorus (P) fertilization treatment. The effectivity of field inoculation of Cabernet Sauvignon plants grafted on Richter 110 with the former native fungi and with G. intraradices BEG 72 in a replant vineyard severely infested by the root-rot fungus Armillaria mellea (Vahl ex Fr.) Kummer was assessed. The native fungi were not effective at enhancing plant development, and only G. intraradices BEG 72, resulted in a positive response. Field inoculation with this selected fungus increased plant shoot dry weight at the end of the first growing season.


Assuntos
Fungos/fisiologia , Micorrizas , Raízes de Plantas , Vitis , Agaricales , DNA Fúngico/análise , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Dados de Sequência Molecular , Micorrizas/fisiologia , Fósforo/metabolismo , Doenças das Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/microbiologia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Solo/análise , Microbiologia do Solo , Espanha , Esporos Fúngicos/classificação , Esporos Fúngicos/isolamento & purificação , Vitis/crescimento & desenvolvimento , Vitis/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...