Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Pattern Anal Mach Intell ; 41(3): 523-536, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29994059

RESUMO

Person re-identification (re-id) is a critical problem in video analytics applications such as security and surveillance. The public release of several datasets and code for vision algorithms has facilitated rapid progress in this area over the last few years. However, directly comparing re-id algorithms reported in the literature has become difficult since a wide variety of features, experimental protocols, and evaluation metrics are employed. In order to address this need, we present an extensive review and performance evaluation of single- and multi-shot re-id algorithms. The experimental protocol incorporates the most recent advances in both feature extraction and metric learning. To ensure a fair comparison, all of the approaches were implemented using a unified code library that includes 11 feature extraction algorithms and 22 metric learning and ranking techniques. All approaches were evaluated using a new large-scale dataset that closely mimics a real-world problem setting, in addition to 16 other publicly available datasets: VIPeR, GRID, CAVIAR, DukeMTMC4ReID, 3DPeS, PRID, V47, WARD, SAIVT-SoftBio, CUHK01, CHUK02, CUHK03, RAiD, iLIDSVID, HDA+, and Market1501. The evaluation codebase and results will be made publicly available for community use.

2.
Sci Rep ; 7(1): 10759, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883434

RESUMO

We describe a computer vision-based mosaicking method for in vivo videos of reflectance confocal microscopy (RCM). RCM is a microscopic imaging technique, which enables the users to rapidly examine tissue in vivo. Providing resolution at cellular-level morphology, RCM imaging combined with mosaicking has shown to be highly sensitive and specific for non-invasively guiding skin cancer diagnosis. However, current RCM mosaicking techniques with existing microscopes have been limited to two-dimensional sequences of individual still images, acquired in a highly controlled manner, and along a specific predefined raster path, covering a limited area. The recent advent of smaller handheld microscopes is enabling acquisition of videos, acquired in a relatively uncontrolled manner and along an ad-hoc arbitrarily free-form, non-rastered path. Mosaicking of video-images (video-mosaicking) is necessary to display large areas of tissue. Our video-mosaicking methods addresses this need. The method can handle unique challenges encountered during video capture such as motion blur artifacts due to rapid motion of the microscope over the imaged area, warping in frames due to changes in contact angle and varying resolution with depth. We present test examples of video-mosaics of melanoma and non-melanoma skin cancers, to demonstrate potential clinical utility.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia Confocal/métodos , Humanos , Melanoma/diagnóstico por imagem , Melanoma/patologia , Microscopia Confocal/instrumentação , Microscopia de Vídeo/métodos , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/patologia
3.
Cytometry A ; 83(12): 1113-23, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24273157

RESUMO

Noninvasive enumeration of rare circulating cell populations in small animals is of great importance in many areas of biomedical research. In this work, we describe a macroscopic fluorescence imaging system and automated computer vision algorithm that allows in vivo detection, enumeration and tracking of circulating fluorescently-labeled cells from multiple large blood vessels in the ear of a mouse. This imaging system uses a 660 nm laser and a high sensitivity electron-multiplied charge coupled device camera (EMCCD) to acquire fluorescence image sequences from relatively large (∼5 × 5 mm(2) ) imaging areas. The primary technical challenge was developing an automated method for identifying and tracking rare cell events in image sequences with substantial autofluorescence and noise content. To achieve this, we developed a two-step image analysis algorithm that first identified cell candidates in individual frames, and then merged cell candidates into tracks by dynamic analysis of image sequences. The second step was critical since it allowed rejection of >97% of false positive cell counts. Overall, our computer vision IVFC (CV-IVFC) approach allows single-cell detection sensitivity at estimated concentrations of 20 cells/mL of peripheral blood. In addition to simple enumeration, the technique recovers the cell's trajectory, which in the future could be used to automatically identify, for example, in vivo homing and docking events.


Assuntos
Citometria de Fluxo/métodos , Algoritmos , Animais , Contagem de Células Sanguíneas/instrumentação , Contagem de Células Sanguíneas/métodos , Rastreamento de Células , Citometria de Fluxo/instrumentação , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Nus , Mieloma Múltiplo/sangue , Mieloma Múltiplo/patologia , Transplante de Neoplasias , Células Neoplásicas Circulantes , Imagens de Fantasmas
4.
IEEE Trans Image Process ; 15(5): 1202-14, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16671301

RESUMO

A computer vision-based system using images from an airborne aircraft can increase flight safety by aiding the pilot to detect obstacles in the flight path so as to avoid mid-air collisions. Such a system fits naturally with the development of an external vision system proposed by NASA for use in high-speed civil transport aircraft with limited cockpit visibility. The detection techniques should provide high detection probability for obstacles that can vary from subpixels to a few pixels in size, while maintaining a low false alarm probability in the presence of noise and severe background clutter. Furthermore, the detection algorithms must be able to report such obstacles in a timely fashion, imposing severe constraints on their execution time. For this purpose, we have implemented a number of algorithms to detect airborne obstacles using image sequences obtained from a camera mounted on an aircraft. This paper describes the methodology used for characterizing the performance of the dynamic programming obstacle detection algorithm and its special cases. The experimental results were obtained using several types of image sequences, with simulated and real backgrounds. The approximate performance of the algorithm is also theoretically derived using principles of statistical analysis in terms of the signal-to-noise ration (SNR) required for the probabilities of false alarms and misdetections to be lower than prespecified values. The theoretical and experimental performance are compared in terms of the required SNR.


Assuntos
Algoritmos , Inteligência Artificial , Aviação/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Armazenamento e Recuperação da Informação/métodos , Reconhecimento Automatizado de Padrão/métodos , Aumento da Imagem/métodos
5.
IEEE Trans Pattern Anal Mach Intell ; 27(11): 1820-5, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16285379

RESUMO

This paper addresses the problem of human gait classification from a robust model (in)validation perspective. The main idea is to associate to each class of gaits a nominal model, subject to bounded uncertainty and measurement noise. In this context, the problem of recognizing an activity from a sequence of frames can be formulated as the problem of determining whether this sequence could have been generated by a given (model, uncertainty, and noise) triple. By exploiting interpolation theory, this problem can be recast into a nonconvex optimization. In order to efficiently solve it, we propose two convex relaxations, one deterministic and one stochastic. As we illustrate experimentally, these relaxations achieve over 83 percent and 86 percent success rates, respectively, even in the face of noisy data.


Assuntos
Biometria/métodos , Marcha/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Articulações/fisiologia , Modelos Biológicos , Reconhecimento Automatizado de Padrão/métodos , Gravação em Vídeo/métodos , Algoritmos , Inteligência Artificial , Análise por Conglomerados , Simulação por Computador , Humanos , Aumento da Imagem/métodos , Armazenamento e Recuperação da Informação/métodos , Perna (Membro)/fisiologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
IEEE Trans Image Process ; 13(2): 166-78, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15376938

RESUMO

Tracking an object in a sequence of images can fail due to partial occlusion or clutter. Robustness to occlusion can be increased by tracking the object as a set of "parts" such that not all of these are occluded at the same time. However, successful implementation of this idea hinges upon finding a suitable set of parts. In this paper we propose a novel segmentation, specifically designed to improve robustness against occlusion in the context of tracking. The main result shows that tracking the parts resulting from this segmentation outperforms both tracking parts obtained through traditional segmentations, and tracking the entire target. Additional results include a statistical analysis of the correlation between features of a part and tracking error, and identifying a cost function that exhibits a high degree of correlation with the tracking error.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão , Processamento de Sinais Assistido por Computador , Técnica de Subtração , Gravação em Vídeo/métodos , Animais , Artefatos , Humanos , Movimento/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...