Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cancer ; 4(7): 1036-1052, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37349501

RESUMO

Precision medicine is critically dependent on better methods for diagnosing and staging disease and predicting drug response. Histopathology using hematoxylin and eosin (H&E)-stained tissue (not genomics) remains the primary diagnostic method in cancer. Recently developed highly multiplexed tissue imaging methods promise to enhance research studies and clinical practice with precise, spatially resolved single-cell data. Here, we describe the 'Orion' platform for collecting H&E and high-plex immunofluorescence images from the same cells in a whole-slide format suitable for diagnosis. Using a retrospective cohort of 74 colorectal cancer resections, we show that immunofluorescence and H&E images provide human experts and machine learning algorithms with complementary information that can be used to generate interpretable, multiplexed image-based models predictive of progression-free survival. Combining models of immune infiltration and tumor-intrinsic features achieves a 10- to 20-fold discrimination between rapid and slow (or no) progression, demonstrating the ability of multimodal tissue imaging to generate high-performance biomarkers.


Assuntos
Neoplasias , Humanos , Estudos Retrospectivos , Diagnóstico por Imagem , Biomarcadores Tumorais , Imunofluorescência
2.
Cytometry A ; 93(12): 1220-1225, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30277660

RESUMO

Circulating tumor cells (CTCs) can reliably be identified in cancer patients and are associated with clinical outcome. Next-generation "liquid biopsy" technologies will expand CTC diagnostic investigation to include phenotypic characterization and single-cell molecular analysis. We describe here a rare cell analysis platform designed to comprehensively collect and identify CTCs, enable multi-parameter assessment of individual CTCs, and retrieve single cells for molecular analysis. The platform has the following four integrated components: 1) density-based separation of the CTC-containing blood fraction and sample deposition onto microscope slides; 2) automated multiparameter fluorescence staining; 3) image scanning, analysis, and review; and 4) mechanical CTC retrieval. The open platform utilizes six fluorescence channels, of which four channels are used to identify CTC and two channels are available for investigational biomarkers; a prototype assay that allows three investigational biomarker channels has been developed. Single-cell retrieval from fixed slides is compatible with whole genome amplification methods for genomic analysis. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Assuntos
Neoplasias/patologia , Células Neoplásicas Circulantes/patologia , Biomarcadores Tumorais/genética , Contagem de Células/métodos , Linhagem Celular Tumoral , Separação Celular/métodos , Fluorescência , Humanos , Biópsia Líquida/métodos , Neoplasias/genética , Análise de Célula Única/métodos
3.
Methods Mol Biol ; 1634: 163-172, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28819849

RESUMO

The RareCyte platform addresses important technology limitations of current circulating tumor cell (CTC) collection methods, and expands CTC interrogation to include advanced phenotypic characterization and single-cell molecular analysis. In this respect, it represents the "next generation" of cell-based liquid biopsy technologies. In order to identify and analyze CTCs, RareCyte has developed an integrated sample preparation, imaging and individual cell retrieval process. The first step in the process, AccuCyte®, allows the separation, collection, and transfer to a slide the nucleated cell fraction of the blood that contains CTCs. Separation and collection are based on cell density-rather than size or surface molecular expression-and are performed within a closed system, without wash or lysis steps, enabling high CTC recovery. Here, we describe our technique for nucleated cell collection from a blood sample, and the spreading of these nucleated cells onto glass slides permitting immunofluorescent staining, cell identification, and individual cell picking described in subsequent chapters. In addition to collection of rare cells such as CTCs, AccuCyte also collects cells of the circulating immune system onto archivable slides as well as plasma from the same sample.


Assuntos
Separação Celular/métodos , Células Imobilizadas/patologia , Neoplasias/diagnóstico , Células Neoplásicas Circulantes/patologia , Análise de Célula Única/métodos , Contagem de Células , Linhagem Celular Tumoral , Separação Celular/instrumentação , Células Imobilizadas/metabolismo , Centrifugação/instrumentação , Centrifugação/métodos , Desenho de Equipamento , Humanos , Neoplasias/sangue , Neoplasias/patologia , Células Neoplásicas Circulantes/metabolismo , Kit de Reagentes para Diagnóstico/normas , Análise de Célula Única/instrumentação
4.
Prenat Diagn ; 36(11): 1009-1019, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27616633

RESUMO

OBJECTIVE: The goal was to develop methods for detection of chromosomal and subchromosomal abnormalities in fetal cells in the mother's circulation at 10-16 weeks' gestation using analysis by array comparative genomic hybridization (CGH) and/or next-generation sequencing (NGS). METHOD: Nucleated cells from 30 mL of blood collected at 10-16 weeks' gestation were separated from red cells by density fractionation and then immunostained to identify cytokeratin positive and CD45 negative trophoblasts. Individual cells were picked and subjected to whole genome amplification, genotyping, and analysis by array CGH and NGS. RESULTS: Fetal cells were recovered from most samples as documented by Y chromosome PCR, short tandem repeat analysis, array CGH, and NGS including over 30 normal male cells, one 47,XXY cell from an affected fetus, one trisomy 18 cell from an affected fetus, nine cells from a trisomy 21 case, three normal cells and one trisomy 13 cell from a case with confined placental mosaicism, and two chromosome 15 deletion cells from a case known by CVS to have a 2.7 Mb de novo deletion. CONCLUSION: We believe that this is the first report of using array CGH and NGS whole genome sequencing to detect chromosomal abnormalities in fetal trophoblastic cells from maternal blood. © 2016 The Authors. Prenatal Diagnosis published by John Wiley & Sons, Ltd.


Assuntos
Aberrações Cromossômicas , Hibridização Genômica Comparativa , Testes para Triagem do Soro Materno/métodos , Análise de Sequência de DNA , Trofoblastos/citologia , Variações do Número de Cópias de DNA , Estudos de Viabilidade , Feminino , Voluntários Saudáveis , Humanos , Masculino , Gravidez
5.
BMC Cancer ; 15: 360, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25944336

RESUMO

BACKGROUND: Circulating tumor cells (CTCs) are malignant cells that have migrated from solid cancers into the blood, where they are typically present in rare numbers. There is great interest in using CTCs to monitor response to therapies, to identify clinically actionable biomarkers, and to provide a non-invasive window on the molecular state of a tumor. Here we characterize the performance of the AccuCyte®--CyteFinder® system, a comprehensive, reproducible and highly sensitive platform for collecting, identifying and retrieving individual CTCs from microscopic slides for molecular analysis after automated immunofluorescence staining for epithelial markers. METHODS: All experiments employed a density-based cell separation apparatus (AccuCyte) to separate nucleated cells from the blood and transfer them to microscopic slides. After staining, the slides were imaged using a digital scanning microscope (CyteFinder). Precisely counted model CTCs (mCTCs) from four cancer cell lines were spiked into whole blood to determine recovery rates. Individual mCTCs were removed from slides using a single-cell retrieval device (CytePicker™) for whole genome amplification and subsequent analysis by PCR and Sanger sequencing, whole exome sequencing, or array-based comparative genomic hybridization. Clinical CTCs were evaluated in blood samples from patients with different cancers in comparison with the CellSearch® system. RESULTS: AccuCyte--CyteFinder presented high-resolution images that allowed identification of mCTCs by morphologic and phenotypic features. Spike-in mCTC recoveries were between 90 and 91%. More than 80% of single-digit spike-in mCTCs were identified and even a single cell in 7.5 mL could be found. Analysis of single SKBR3 mCTCs identified presence of a known TP53 mutation by both PCR and whole exome sequencing, and confirmed the reported karyotype of this cell line. Patient sample CTC counts matched or exceeded CellSearch CTC counts in a small feasibility cohort. CONCLUSION: The AccuCyte--CyteFinder system is a comprehensive and sensitive platform for identification and characterization of CTCs that has been applied to the assessment of CTCs in cancer patient samples as well as the isolation of single cells for genomic analysis. It thus enables accurate non-invasive monitoring of CTCs and evolving cancer biology for personalized, molecularly-guided cancer treatment.


Assuntos
Separação Celular/métodos , Células Neoplásicas Circulantes , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Hibridização Genômica Comparativa , Análise Mutacional de DNA , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Masculino , Neoplasias da Próstata/patologia , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...