Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heredity (Edinb) ; 107(2): 174-86, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21407253

RESUMO

The evolution of the savanna biome has been deeply marked by repeated contraction/expansion phases due to climate perturbations during the Quaternary period. In this study, we investigated the impact of the last glacial maximum (LGM) on the present genetic pattern of Vitellaria paradoxa (shea tree), a major African savanna tree. A range-wide sampling of the species enabled us to sample 374 individuals from 71 populations distributed throughout sub-Sahelian Africa. Trees were genotyped using 3 chloroplasts and 12 nuclear microsatellites, and were sequenced for 2 polymorphic chloroplast intergenic spacers. Analyses of genetic diversity and structure were based on frequency-based and Bayesian methods. Potential distributions of V. paradoxa at present, during the LGM and the last interglacial period, were examined using DIVA-GIS ecological niche modelling (ENM). Haplotypic and allelic richness varied significantly across the range according to chloroplast and nuclear microsatellites, which pointed to higher diversity in West Africa. A high but contrasted level of differentiation was revealed among populations with a clear phylogeographic signal, with both nuclear (F(ST) = 0.21; R(ST) = 0.28; R(ST) > R(ST) (permuted)) and chloroplast simple sequence repeats (SSRs) (G(ST) = 0.81; N(ST) = 0.90; N(ST) > N(ST) (permuted)). We identified a strong geographically related structure separating western and eastern populations, and a substructure in the eastern part of the area consistent with subspecies distinction. Using ENM, we deduced that perturbations during the LGM fragmented the potential eastern distribution of shea tree, but not its distribution in West Africa. Our main results suggest that climate variations are the major factor explaining the genetic pattern of V. paradoxa.


Assuntos
Mudança Climática , Sapotaceae/genética , África , DNA de Cloroplastos/genética , Variação Genética , Haplótipos , Repetições de Microssatélites/genética , Filogenia , Filogeografia
2.
Heredity (Edinb) ; 107(3): 189-99, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21245893

RESUMO

A key issue in evolutionary biology is an improved understanding of the genetic mechanisms by which species adapt to various environments. Using DNA sequence data, it is possible to quantify the number of adaptive and deleterious mutations, and the distribution of fitness effects of new mutations (its mean and variance) by simultaneously taking into account the demography of a given species. We investigated how selection functions at eight housekeeping genes of four closely related, outcrossing species of wild tomatoes that are native to diverse environments in western South America (Solanum arcanum, S. chilense, S. habrochaites and S. peruvianum). We found little evidence for adaptive mutations but pervasive evidence for strong purifying selection in coding regions of the four species. In contrast, the strength of purifying selection seems to vary among the four species in non-coding (NC) regions (introns). Using F(ST)-based measures of fixation in subdivided populations, we suggest that weak purifying selection has affected the NC regions of S. habrochaites, S. chilense and S. peruvianum. In contrast, NC regions in S. arcanum show a distribution of fitness effects with mutations being either nearly neutral or very strongly deleterious. These results suggest that closely related species with similar genetic backgrounds but experiencing contrasting environments differ in the variance of deleterious fitness effects.


Assuntos
Evolução Molecular , Genes de Plantas , Aptidão Genética , Mutação , Seleção Genética , Solanum lycopersicum/genética , Adaptação Biológica/genética , Solanum lycopersicum/classificação , Solanum lycopersicum/fisiologia , Modelos Genéticos , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , RNA não Traduzido , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...