Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1380429, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919825

RESUMO

Enhancing grain yield is a primary goal in the cultivation of major staple crops, including wheat. Recent research has focused on identifying the physiological and molecular factors that influence grain weight, a critical determinant of crop yield. However, a bottleneck has arisen due to the trade-off between grain weight and grain number, whose underlying causes remain elusive. In a novel approach, a wheat expansin gene, TaExpA6, known for its expression in root tissues, was engineered to express in the grains of the spring wheat cultivar Fielder. This modification led to increases in both grain weight and yield without adversely affecting grain number. Conversely, a triple mutant line targeting the gene TaGW2, a known negative regulator of grain weight, resulted in increased grain weight but decreased grain number, potentially offsetting yield gains. This study aimed to evaluate the two aforementioned modified wheat genotypes (TaExpA6 and TaGW2) alongside their respective wild-type counterparts. Conducted in southern Chile, the study employed a Complete Randomized Block Design with four replications, under well-managed field conditions. The primary metrics assessed were grain yield, grain number, and average grain weight per spike, along with detailed measurements of grain weight and dimensions across the spike, ovary weight at pollination (Waddington's scale 10), and post-anthesis expression levels of TaExpA6 and TaGW2. Results indicated that both the TaExpA6 and the triple mutant lines achieved significantly higher average grain weights compared to their respective wild types. Notably, the TaExpA6 line did not exhibit a reduction in grain number, thereby enhancing grain yield per spike. By contrast, the triple mutant line showed a reduced grain number per spike, with no significant change in overall yield. TaExpA6 expression peaked at 10 days after anthesis (DAA), and its effect on grain weight over the WT became apparent after 15 DAA. In contrast, TaGW2 gene disruption in the triple mutant line increased ovary size at anthesis, leading to improved grain weight above the WT from the onset of grain filling. These findings suggest that the trade-off between grain weight and number could be attributed to the overlapping of the critical periods for the determination of these traits.

2.
J Exp Bot ; 75(10): 2781-2798, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38366662

RESUMO

Sulfur (S) is an essential macronutrient for plants and its availability in soils is an important determinant for growth and development. Current regulatory policies aimed at reducing industrial S emissions together with changes in agronomical practices have led to a decline in S contents in soils worldwide. Deficiency of sulfate-the primary form of S accessible to plants in soil-has adverse effects on both crop yield and nutritional quality. Hence, recent research has increasingly focused on unraveling the molecular mechanisms through which plants detect and adapt to a limiting supply of sulfate. A significant part of these studies involves the use of omics technologies and has generated comprehensive catalogs of sulfate deficiency-responsive genes and processes, principally in Arabidopsis together with a few studies centering on crop species such as wheat, rice, or members of the Brassica genus. Although we know that sulfate deficiency elicits an important reprogramming of the transcriptome, the transcriptional regulators orchestrating this response are not yet well understood. In this review, we summarize our current knowledge of gene expression responses to sulfate deficiency and recent efforts towards the identification of the transcription factors that are involved in controlling these responses. We further compare the transcriptional response and putative regulators between Arabidopsis and two important crop species, rice and tomato, to gain insights into common mechanisms of the response to sulfate deficiency.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Sulfatos , Sulfatos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento
3.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37958577

RESUMO

Climate-change-induced temperature fluctuations pose a significant threat to crop production, particularly in the Southern Hemisphere. This study investigates the transcriptome and physiological responses of rapeseed to post-flowering temperature increases, providing valuable insights into the molecular mechanisms underlying rapeseed tolerance to heat stress. Two rapeseed genotypes, Lumen and Solar, were assessed under control and heat stress conditions in field experiments conducted in Valdivia, Chile. Results showed that seed yield and seed number were negatively affected by heat stress, with genotype-specific responses. Lumen exhibited an average of 9.3% seed yield reduction, whereas Solar showed a 28.7% reduction. RNA-seq analysis of siliques and seeds revealed tissue-specific responses to heat stress, with siliques being more sensitive to temperature stress. Hierarchical clustering analysis identified distinct gene clusters reflecting different aspects of heat stress adaptation in siliques, with a role for protein folding in maintaining silique development and seed quality under high-temperature conditions. In seeds, three distinct patterns of heat-responsive gene expression were observed, with genes involved in protein folding and response to heat showing genotype-specific expression. Gene coexpression network analysis revealed major modules for rapeseed yield and quality, as well as the trade-off between seed number and seed weight. Overall, this study contributes to understanding the molecular mechanisms underlying rapeseed tolerance to heat stress and can inform crop improvement strategies targeting yield optimization under changing environmental conditions.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Transcriptoma , Temperatura , Brassica rapa/genética , Genótipo , Sementes/metabolismo
4.
Plants (Basel) ; 12(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37571021

RESUMO

This research elucidates the dynamic expression of expansin genes during the wheat grain (Triticum aestivum L.) development process using comprehensive meta-analysis and experimental validation. We leveraged RNA-seq data from multiple public databases, applying stringent criteria for selection, and identified 60,852 differentially expressed genes across developmental stages. From this pool, 28,558 DEGs were found to exhibit significant temporal regulation in at least two different datasets and were enriched for processes integral to grain development such as carbohydrate metabolism and cell wall organization. Notably, 30% of the 241 known expansin genes showed differential expression during grain growth. Hierarchical clustering and expression level analysis revealed temporal regulation and distinct contributions of expansin subfamilies during the early stages of grain development. Further analysis using co-expression networks underscored the significance of expansin genes, revealing their substantial co-expression with genes involved in cell wall modification. Finally, qPCR validation and grain morphological analysis under field conditions indicated a significant negative correlation between the expression of select expansin genes, and grain size and weight. This study illuminates the potential role of expansin genes in wheat grain development and provides new avenues for targeted genetic improvements in wheat.

5.
Front Plant Sci ; 14: 1010669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937996

RESUMO

Introduction: Cycling Dof transcription factors (CDFs) have been involved in different aspects of plant growth and development. In Arabidopsis and tomato, one member of this family (CDF1) has recently been associated with the regulation of primary metabolism and abiotic stress responses, but their roles in crop production under open field conditions remain unknown. Methods: In this study, we compared the growth, and tuber yield and composition of plants ectopically expressing the CDF1 gene from Arabidopsis under the control of the 35S promoter with wild-type (WT) potato plants cultured in growth chamber and open field conditions. Results: In growth chambers, the 35S::AtCDF1 plants showed a greater tuber yield than the WT by increasing the biomass partition for tuber development. Under field conditions, the ectopic expression of CDF1 also promoted the sink strength of the tubers, since 35S::AtCDF1 plants exhibited significant increases in tuber size and weight resulting in higher tuber yield. A metabolomic analysis revealed that tubers of 35S::AtCDF1 plants cultured under open field conditions accumulated higher levels of glucose, starch and amino acids than WT tubers. A comparative proteomic analysis of tubers of 35S::AtCDF1 and WT plants cultured under open field conditions revealed that these changes can be accounted for changes in the expression of proteins involved in energy production and different aspects of C and N metabolism. Discussion: The results from this study advance our collective understanding of the role of CDFs and are of great interest for the purposes of improving the yield and breeding of crop plants.

6.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769138

RESUMO

LSUs (RESPONSE TO LOW SULFUR) are plant-specific proteins of unknown function that were initially identified during transcriptomic studies of the sulfur deficiency response in Arabidopsis. Recent functional studies have shown that LSUs are important hubs of protein interaction networks with potential roles in plant stress responses. In particular, LSU proteins have been reported to interact with members of the brassinosteroid, jasmonate signaling, and ethylene biosynthetic pathways, suggesting that LSUs may be involved in response to plant stress through modulation of phytohormones. Furthermore, in silico analysis of the promoter regions of LSU genes in Arabidopsis has revealed the presence of cis-regulatory elements that are potentially responsive to phytohormones such as ABA, auxin, and jasmonic acid, suggesting crosstalk between LSU proteins and phytohormones. In this review, we summarize current knowledge about the LSU gene family in plants and its potential role in phytohormone responses.


Assuntos
Arabidopsis , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enxofre/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
7.
Plants (Basel) ; 11(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35736678

RESUMO

LSU proteins belong to a plant-specific gene family initially characterized by their strong induction in response to sulfate (S) deficiency. In the last few years, LSUs have arisen as relevant hubs in protein-protein interaction networks, in which they play relevant roles in the response to abiotic and biotic stresses. Most of our knowledge on LSU genomic organization, expression and function comes from studies in Arabidopsis and tobacco, while little is known about the LSU gene repertoire and evolution of this family in land plants. In this work, a total of 270 LSU family members were identified using 134 land plant species with whole-genome sequences available. Phylogenetic analysis revealed that LSU genes belong to a Spermatophyta-specific gene family, and their homologs are distributed in three major groups, two for dicotyledons and one group for monocotyledons. Protein sequence analyses showed four new motifs that further support the subgroup classification by phylogenetic analyses. Moreover, we analyzed the expression of LSU genes in one representative species of each phylogenetic group (wheat, tomato and Arabidopsis) and found a conserved response to S deficiency, suggesting that these genes might play a key role in S stress responses. In summary, our results indicate that LSU genes belong to the Spermatophyta-specific gene family and their response to S deficiency is conserved in angiosperms.

8.
PeerJ ; 10: e12924, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35341038

RESUMO

Perennial ryegrass (Lolium perenne L.) possesses a high level of nutritional quality and is widely used as a forage species to establish permanent pastures in southern Chile. However, the productivity of most such pastures is limited by various environmental agents, such as insect pests and drought. In this context, our work stresses the need for elucidating the ability of fungal endophytes to establish interactions with plants, and to understand how these processes contribute to plant performance and fitness. Therefore, we evaluated the colonization and impact of two native strains of the endophytic insect-pathogenic fungus (EIPF) group isolated from permanent ryegrass pastures in southern Chile. Roots and seeds of ryegrass and scarabaeid larvae were collected from nine different ryegrass pastures in the Los Ríos region of southern Chile to specifically isolate EIPFs belonging to the genera Beauveria and Metarhizium. Fungal isolations were made on 2% water agar with antibiotics, and strains were identified by analyzing the entire internal transcribed spacer (ITS) 1-5.8S-ITS2 ribosomal DNA region. Four strains of Beauveria and 33 strains of Metarhizium were isolated only in scarabaeid larvae from ryegrass pastures across four sites. Experimental mini-pastures that were either not inoculated (control) or co-inoculated with conidia of the strains Beauveria vermiconia NRRL B-67993 (P55_1) and Metarhizium aff. lepidiotae NRRL B-67994 (M25_2) under two soil humidity levels were used. Ryegrass plants were randomly collected from the mini-pastures to characterize EIPF colonization in the roots by real-time PCR and fluorescence microscopy. Aboveground biomass was measured to analyze the putative impact of colonization on the mini-pastures' aboveground phenotypic traits with R software using a linear mixed-effects model and the ANOVA statistical test. Seasonal variation in the relative abundance of EIPFs was observed, which was similar between both strains from autumn to spring, but different in summer. In summer, the relative abundance of both EIPFs decreased under normal moisture conditions, but it did not differ significantly under water stress. The aboveground biomass of ryegrass also increased from autumn to spring and decreased in summer in both the inoculated and control mini-pastures. Although differences were observed between moisture levels, they were not significant between the control and inoculated mini-pastures, except in July (fresh weight and leaf area) and October (dry weight). Our findings indicate that native strains of B. vermiconia NRRL B-67993 (P55_1) and M. aff. lepidiotae NRRL B-67994 (M25_2) colonize and co-exist in the roots of ryegrass, and these had little or no effect on the mini-pastures' aboveground biomass; however, they could have other functions, such as protection against root herbivory by insect pests.


Assuntos
Beauveria , Lolium , Metarhizium , Animais , Beauveria/fisiologia , Metarhizium/genética , Lolium/microbiologia , Insetos/microbiologia , Plantas/microbiologia , Larva/microbiologia
9.
Int J Mol Sci ; 22(9)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923211

RESUMO

A critical barrier to improving crop yield is the trade-off between seed weight (SW) and seed number (SN), which has been commonly reported in several crops, including Brassica napus. Despite the agronomic relevance of this issue, the molecular factors involved in the interaction between SW and SN are largely unknown in crops. In this work, we performed a detailed transcriptomic analysis of 48 seed samples obtained from two rapeseed spring genotypes subjected to different source-sink (S-S) ratios in order to examine the relationship between SW and SN under different field conditions. A multifactorial analysis of the RNA-seq data was used to identify a group of 1014 genes exclusively regulated by the S-S ratio. We found that a reduction in the S-S ratio during seed filling induces the expression of genes involved in sucrose transport, seed weight, and stress responses. Moreover, we identified five co-expression modules that are positively correlated with SW and negatively correlated with SN. Interestingly, one of these modules was significantly enriched in transcription factors (TFs). Furthermore, our network analysis predicted several NAC TFs as major hubs underlying SW and SN compensation. Taken together, our study provides novel insights into the molecular factors associated with the SW-SN relationship in rapeseed and identifies TFs as potential targets when improving crop yield.


Assuntos
Brassica napus/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Sementes/genética , Transcriptoma , Brassica napus/anatomia & histologia , Brassica napus/crescimento & desenvolvimento , Genótipo , Tamanho do Órgão , Proteínas de Plantas/genética , Locos de Características Quantitativas , Sementes/anatomia & histologia , Sementes/química , Sementes/crescimento & desenvolvimento
10.
Plants (Basel) ; 11(1)2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35009063

RESUMO

In a changing climate, extreme weather events such as heatwaves will be more frequent and could affect grain weight and the quality of crops such as wheat, one of the most significant crops in terms of global food security. In this work, we characterized the response of Triticum turgidum L. spp. durum wheat to short-term heat stress (HS) treatment at transcriptomic and physiological levels during early grain filling in glasshouse experiments. We found a significant reduction in grain weight (23.9%) and grain dimensions from HS treatment. Grain quality was also affected, showing a decrease in starch content (20.8%), in addition to increments in grain protein levels (14.6%), with respect to the control condition. Moreover, RNA-seq analysis of durum wheat grains allowed us to identify 1590 differentially expressed genes related to photosynthesis, response to heat, and carbohydrate metabolic process. A gene regulatory network analysis of HS-responsive genes uncovered novel transcription factors (TFs) controlling the expression of genes involved in abiotic stress response and grain quality, such as a member of the DOF family predicted to regulate glycogen and starch biosynthetic processes in response to HS in grains. In summary, our results provide new insights into the extensive transcriptome reprogramming that occurs during short-term HS in durum wheat grains.

11.
Front Plant Sci ; 11: 601558, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329669

RESUMO

Nitrate is an essential macronutrient and a signal molecule that regulates the expression of multiple genes involved in plant growth and development. Here, we describe the participation of Arabidopsis DNA binding with one finger (DOF) transcription factor CDF3 in nitrate responses and shows that CDF3 gene is induced under nitrate starvation. Moreover, knockout cdf3 mutant plants exhibit nitrate-dependent lateral and primary root modifications, whereas CDF3 overexpression plants show increased biomass and enhanced root development under both nitrogen poor and rich conditions. Expression analyses of 35S::CDF3 lines reveled that CDF3 regulates the expression of an important set of nitrate responsive genes including, glutamine synthetase-1, glutamate synthase-2, nitrate reductase-1, and nitrate transporters NRT2.1, NRT2.4, and NRT2.5 as well as carbon assimilation genes like PK1 and PEPC1 in response to N availability. Consistently, metabolite profiling disclosed that the total amount of key N metabolites like glutamate, glutamine, and asparagine were higher in CDF3-overexpressing plants, but lower in cdf3-1 in N limiting conditions. Moreover, overexpression of CDF3 in tomato increased N accumulation and yield efficiency under both optimum and limiting N supply. These results highlight CDF3 as an important regulatory factor for the nitrate response, and its potential for improving N use efficiency in crops.

12.
BMC Plant Biol ; 20(1): 385, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32831040

RESUMO

BACKGROUND: Sulfur is a major component of biological molecules and thus an essential element for plants. Deficiency of sulfate, the main source of sulfur in soils, negatively influences plant growth and crop yield. The effect of sulfate deficiency on plants has been well characterized at the physiological, transcriptomic and metabolomic levels in Arabidopsis thaliana and a limited number of crop plants. However, we still lack a thorough understanding of the molecular mechanisms and regulatory networks underlying sulfate deficiency in most plants. In this work we analyzed the impact of sulfate starvation on the transcriptome of tomato plants to identify regulatory networks and key transcriptional regulators at a temporal and organ scale. RESULTS: Sulfate starvation reduces the growth of roots and leaves which is accompanied by major changes in the organ transcriptome, with the response being temporally earlier in roots than leaves. Comparative analysis showed that a major part of the Arabidopsis and tomato transcriptomic response to sulfate starvation is conserved between these plants and allowed for the identification of processes specifically regulated in tomato at the transcript level, including the control of internal phosphate levels. Integrative gene network analysis uncovered key transcription factors controlling the temporal expression of genes involved in sulfate assimilation, as well as cell cycle, cell division and photosynthesis during sulfate starvation in tomato roots and leaves. Interestingly, one of these transcription factors presents a high identity with SULFUR LIMITATION1, a central component of the sulfate starvation response in Arabidopsis. CONCLUSIONS: Together, our results provide the first comprehensive catalog of sulfate-responsive genes in tomato, as well as novel regulatory targets for future functional analyses in tomato and other crops.


Assuntos
Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Sulfatos/metabolismo , Enxofre/deficiência , Enxofre/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
13.
Curr Biol ; 30(11): 1988-2000.e3, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32302589

RESUMO

Precise coordination of cell expansion and cell proliferation underlies growth in multicellular organisms. In addition to endogenous developmental programs, external environmental signals are integrated to modulate organ growth in plants. Nitrate is a nitrogen nutrient that can act as a potent signal to modulate shoot growth, yet the molecular mechanisms involved are largely unexplored in Arabidopsis thaliana or other plant species. Herein, we show that nitrate regulates vegetative growth by modulating cell size and endoreplication. We identified the LGO gene, a CDK inhibitor, as a key cell cycle regulatory factor influencing ploidy and cell-size depending on external nitrate. Nitrate induces LGO gene expression as early as 3 days after germination in epidermal and mesophyll cell layers, which undergo endoreplication to increment DNA content and cell size. Our results support a dual role for LGO on endoreplication and cell expansion. Surprisingly, although endoreplication and cell size are greatly reduced in lgo-2 mutant plants and increased in LGO-OX plants, cotyledon size remains unchanged relative to wild type and is set by the amount of nitrate. In lgo-2 mutant plants where cells are unable to endoreplicate fully, cotyledon organ size is achieved through cell division. We conclude nitrate generally controls cotyledon and leaf size by increasing ploidy levels and cell expansion but that cell division can substitute for endoreplication without affecting final organ size or growth in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nitratos/farmacologia , Proteínas Nucleares/metabolismo , Caules de Planta/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Redução da Medicação , Regulação da Expressão Gênica no Desenvolvimento , Nitratos/administração & dosagem , Proteínas Nucleares/genética , Caules de Planta/efeitos dos fármacos , Transdução de Sinais
14.
BMC Plant Biol ; 18(1): 327, 2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514222

RESUMO

BACKGROUND: Grain weight (GW) is a key component of sunflower yield and quality, but may be limited by maternal tissues. Cell growth is influenced by expansin proteins that loosen the plant cell wall. This study aimed to identify spatio-temporal expression of EXPN genes in sunflower reproductive organ tissues (ovary, pericarp, and embryo) and evaluate correlations between reproductive organ growth and expansin genes expression. Evaluations involved eight different developmental stages, two genotypes, two source-sink treatments and two experiments. The genotypes evaluated are contrasting in GW (Alybro and confection variety RHA280) under two source-sink treatments (control and shaded) to study the interactions between grain growth and expansin genes expression. RESULTS: Ovaries and grains were sampled at pre- and post-anthesis, respectively. Final GW differed between genotypes and shading treatments. Shading treatment decreased final GW by 16.4 and 19.5% in RHA280 and Alybro, respectively. Relative expression of eight expansin genes were evaluated in grain tissues. EXPN4 was the most abundant expansin in the ovary tissue, while EXPN10 and EXPN7 act predominantly in ovary and pericarp tissues, and EXPN1 and EXPN15 in the embryo tissues. CONCLUSIONS: Specific expansin genes were expressed in ovary, pericarp and embryo in a tissue-specific manner. Differential expression among grain tissues was consistent between genotypes, source-sink treatments and experiments. The correlation analysis suggests that EXPN genes could be specifically involved in grain tissue extension, and their expression could be linked to grain size in sunflower.


Assuntos
Grão Comestível/metabolismo , Flores/metabolismo , Helianthus/metabolismo , Proteínas de Plantas/metabolismo , Grão Comestível/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Estudos de Associação Genética , Helianthus/genética , Helianthus/crescimento & desenvolvimento , Filogenia
15.
Front Plant Sci ; 9: 470, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29692794

RESUMO

Sulfur is an essential nutrient for plant growth and development. Sulfur is a constituent of proteins, the plasma membrane and cell walls, among other important cellular components. To obtain new insights into the gene regulatory networks underlying the sulfate response, we performed an integrative meta-analysis of transcriptomic data from five different sulfate experiments available in public databases. This bioinformatic approach allowed us to identify a robust set of genes whose expression depends only on sulfate availability, indicating that those genes play an important role in the sulfate response. In relation to sulfate metabolism, the biological function of approximately 45% of these genes is currently unknown. Moreover, we found several consistent Gene Ontology terms related to biological processes that have not been extensively studied in the context of the sulfate response; these processes include cell wall organization, carbohydrate metabolism, nitrogen compound transport, and the regulation of proteolysis. Gene co-expression network analyses revealed relationships between the sulfate-responsive genes that were distributed among seven function-specific co-expression modules. The most connected genes in the sulfate co-expression network belong to a module related to the carbon response, suggesting that this biological function plays an important role in the control of the sulfate response. Temporal analyses of the network suggest that sulfate starvation generates a biphasic response, which involves that major changes in gene expression occur during both the early and late responses. Network analyses predicted that the sulfate response is regulated by a limited number of transcription factors, including MYBs, bZIPs, and NF-YAs. In conclusion, our analysis identified new candidate genes and provided new hypotheses to advance our understanding of the transcriptional regulation of sulfate metabolism in plants.

16.
Plant J ; 92(2): 305-316, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28771873

RESUMO

Root hairs are specialized cells that are important for nutrient uptake. It is well established that nutrients such as phosphate have a great influence on root hair development in many plant species. Here we investigated the role of nitrate on root hair development at a physiological and molecular level. We showed that nitrate increases root hair density in Arabidopsis thaliana. We found that two different root hair defective mutants have significantly less nitrate than wild-type plants, suggesting that in A. thaliana root hairs have an important role in the capacity to acquire nitrate. Nitrate reductase-null mutants exhibited nitrate-dependent root hair phenotypes comparable with wild-type plants, indicating that nitrate is the signal that leads to increased formation of root hairs. We examined the role of two key regulators of root hair cell fate, CPC and WER, in response to nitrate treatments. Phenotypic analyses of these mutants showed that CPC is essential for nitrate-induced responses of root hair development. Moreover, we showed that NRT1.1 and TGA1/TGA4 are required for pathways that induce root hair development by suppression of longitudinal elongation of trichoblast cells in response to nitrate treatments. Our results prompted a model where nitrate signaling via TGA1/TGA4 directly regulates the CPC root hair cell fate specification gene to increase formation of root hairs in A. thaliana.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Nitratos/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas c-myb/fisiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Nitratos/metabolismo , Transdução de Sinais/fisiologia
17.
Front Plant Sci ; 8: 2173, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375591

RESUMO

Plants have developed different signaling systems allowing for the integration of environmental cues to coordinate molecular processes associated to both early development and the physiology of the adult plant. Research on systemic signaling in plants has traditionally focused on the role of phytohormones as long-distance signaling molecules, and more recently the importance of peptides and miRNAs in building up this communication process has also been described. However, it is well-known that plants have the ability to generate different types of long-range electrical signals in response to different stimuli such as light, temperature variations, wounding, salt stress, or gravitropic stimulation. Presently, it is unclear whether short or long-distance electrical communication in plants is linked to nutrient uptake. This review deals with aspects of sensory input in plant roots and the propagation of discrete signals to the plant body. We discuss the physiological role of electrical signaling in nutrient uptake and how nutrient variations may become an electrical signal propagating along the plant.

18.
Bioinformatics ; 33(5): 760-761, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27993775

RESUMO

Summary: GENIUS is a user-friendly web server that uses a novel machine learning algorithm to infer functional gene networks focused on specific genes and experimental conditions that are relevant to biological functions of interest. These functions may have different levels of complexity, from specific biological processes to complex traits that involve several interacting processes. GENIUS also enriches the network with new genes related to the biological function of interest, with accuracies comparable to highly discriminative Support Vector Machine methods. Availability and Implementation: GENIUS currently supports eight model organisms and is freely available for public use at http://networks.bio.puc.cl/genius . Contact: genius.psbl@gmail.com. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Redes Reguladoras de Genes , Aprendizado de Máquina , Software , Arabidopsis/genética
19.
J Exp Bot ; 67(10): 3095-108, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27117340

RESUMO

Nitrogen is one of the most important nutrients for plants and, in natural soils, its availability is often a major limiting factor for plant growth. Here we examine the effect of different forms of nitrogen nutrition and of photorespiration on gene expression in the model legume Lotus japonicus with the aim of identifying regulatory candidate genes co-ordinating primary nitrogen assimilation and photorespiration. The transcriptomic changes produced by the use of different nitrogen sources in leaves of L. japonicus plants combined with the transcriptomic changes produced in the same tissue by different photorespiratory conditions were examined. The results obtained provide novel information on the possible role of plastidic glutamine synthetase in the response to different nitrogen sources and in the C/N balance of L. japonicus plants. The use of gene co-expression networks establishes a clear relationship between photorespiration and primary nitrogen assimilation and identifies possible transcription factors connected to the genes of both routes.


Assuntos
Perfilação da Expressão Gênica , Nitrogênio/metabolismo , Fotossíntese/fisiologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/genética , Genes de Plantas/fisiologia , Glutamato-Amônia Ligase/metabolismo , Lotus/genética , Lotus/metabolismo , Lotus/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real
20.
Plant Biotechnol J ; 14(1): 299-312, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25923308

RESUMO

The utilization of high amounts of nitrate fertilizers for crop yield leads to nitrate pollution of ground and surface waters. In this study, we report the assimilation and utilization of nitrate luxuriant levels, 20 times more than the highest N fertilizer application in Europe, by transgenic poplars overexpressing a cytosolic glutamine synthetase (GS1). In comparison with the wild-type controls, transgenic plants grown under high N levels exhibited increased biomass (171.6%) and accumulated higher levels of proteins, chlorophylls and total sugars such as glucose, fructose and sucrose. These plants also exhibited greater nitrogen-use efficiency particularly in young leaves, suggesting that they are able to translocate most of the resources to the above-ground part of the plant to produce biomass. The transgenic poplar transcriptome was greatly affected in response to N availability with 1237 genes differentially regulated in high N, while only 632 genes were differentially expressed in untransformed plants. Many of these genes are essential in the adaptation and response against N excess and include those involved in photosynthesis, cell wall formation and phenylpropanoid biosynthesis. Cellulose production in the transgenic plants was fivefold higher than in control plants, indicating that transgenic poplars represent a potential feedstock for applications in bioenergy. In conclusion, our results show that GS transgenic poplars can be used not only for improving growth and biomass production but also as an important resource for potential phytoremediation of nitrate pollution.


Assuntos
Biocombustíveis , Nitratos/metabolismo , Populus/metabolismo , Árvores/metabolismo , Biodegradação Ambiental/efeitos dos fármacos , Biomassa , Metabolismo dos Carboidratos/efeitos dos fármacos , Metabolismo dos Carboidratos/genética , Carbono/metabolismo , Clorofila/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutamato-Amônia Ligase/metabolismo , Lignina/metabolismo , Nitrogênio/metabolismo , Nitrogênio/farmacologia , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/efeitos dos fármacos , Populus/genética , Populus/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Solubilidade , Transcriptoma/genética , Árvores/efeitos dos fármacos , Árvores/genética , Árvores/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...