Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Horiz ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804204

RESUMO

We report on the experimental realization of Pb1-xSnx Te pentagonal nanowires (NWs) with [110] orientation using molecular beam epitaxy techniques. Using first-principles calculations, we investigate the structural stability of NWs of SnTe and PbTe in three different structural phases: cubic, pentagonal with [001] orientation and pentagonal with [110] orientation. Within a semiclassical approach, we show that the interplay between ionic and covalent bonds favors the formation of pentagonal NWs. Additionally, we find that this pentagonal structure is more likely to occur in tellurides than in selenides. The disclination and twin boundary cause the electronic states originating from the NW core region to generate a conducting band connecting the valence and conduction bands, creating a symmetry-enforced metallic phase. The metallic core band has opposite slopes in the cases of Sn and Te twin boundaries, while the bands from the shell are insulating. We finally study the electronic and topological properties of pentagonal NWs unveiling their potential as a new platform for higher-order topology and fractional charge. These pentagonal NWs represent a unique case of intrinsic core-shell one-dimensional nanostructures with distinct structural, electronic and topological properties between the core and the shell region.

2.
Nano Lett ; 24(6): 1891-1900, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38150559

RESUMO

Two-dimensional (2D) transition metal dichalcogenide (TMD) layers are highly promising as field-effect transistor (FET) channels in the atomic-scale limit. However, accomplishing this superiority in scaled-up FETs remains challenging due to their van der Waals (vdW) bonding nature with respect to conventional metal electrodes. Herein, we report a scalable approach to fabricate centimeter-scale all-2D FET arrays of platinum diselenide (PtSe2) with in-plane platinum ditelluride (PtTe2) edge contacts, mitigating the aforementioned challenges. We realized a reversible transition between semiconducting PtSe2 and metallic PtTe2 via a low-temperature anion exchange reaction compatible with the back-end-of-line (BEOL) processes. All-2D PtSe2 FETs seamlessly edge-contacted with transited metallic PtTe2 exhibited significant performance improvements compared to those with surface-contacted gold electrodes, e.g., an increase of carrier mobility and on/off ratio by over an order of magnitude, achieving a maximum hole mobility of ∼50.30 cm2 V-1 s-1 at room temperature. This study opens up new opportunities toward atomically thin 2D-TMD-based circuitries with extraordinary functionalities.

3.
ISA Trans ; 142: 360-371, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37673731

RESUMO

Robotic manipulators provide advantages in working environments regarding efficiency and safety, which is further increased in the case of elastic joint manipulators, whose mechanical compliance reduces the energy involved in collisions with workers. Cable-driven manipulators are elastic joint manipulators particularly suitable for industrial inspection thanks to the relocation of actuators outside hostile environments, increasing the manipulator payload-to-weight ratio. Recently, synthetic fibre cables are substituting steel cables due to their better-performing mechanical properties, but their visco-elastic behaviour must be compensated in the controller design. The key novelty of this work is using the four elements model, which includes the viscous behaviour, to design a non-linear full-state feedback controller for cable-driven manipulators. Furthermore, the mathematical proof of the closed-loop Lyapunov stability is provided.

4.
ACS Nano ; 10(7): 7180-8, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27351276

RESUMO

Locally induced, magnetic order on the surface of a topological insulator nanowire could enable room-temperature topological quantum devices. Here we report on the realization of selective magnetic control over topological surface states on a single facet of a rectangular Bi2Te3 nanowire via a magnetic insulating Fe3O4 substrate. Low-temperature magnetotransport studies provide evidence for local time-reversal symmetry breaking and for enhanced gapping of the interfacial 1D energy spectrum by perpendicular magnetic-field components, leaving the remaining nanowire facets unaffected. Our results open up great opportunities for development of dissipation-less electronics and spintronics.

5.
Nano Lett ; 13(11): 5079-84, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24093475

RESUMO

We report on low-temperature magnetotransport and SQUID measurements on heavily doped Mn-implanted GaAs nanowires. SQUID data recorded at low magnetic fields exhibit clear signs of the onset of a spin-glass phase with a transition temperature of about 16 K. Magnetotransport experiments reveal a corresponding peak in resistance at 16 K and a large negative magnetoresistance, reaching 40% at 1.6 K and 8 T. The negative magnetoresistance decreases at elevated temperatures and vanishes at about 100 K. We interpret our transport data in terms of spin-dependent hopping in a complex magnetic nanowire landscape of magnetic polarons, separated by intermediate regions of Mn impurity spins, forming a paramagnetic/spin-glass phase.

6.
Nano Lett ; 12(9): 4838-42, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22889471

RESUMO

We report on temperature-dependent charge transport in heavily doped Mn(+)-implanted GaAs nanowires. The results clearly demonstrate that the transport is governed by temperature-dependent hopping processes, with a crossover between nearest neighbor hopping and Mott variable range hopping at about 180 K. From detailed analysis, we have extracted characteristic hopping energies and corresponding hopping lengths. At low temperatures, a strongly nonlinear conductivity is observed which reflects a modified hopping process driven by the high electric field at large bias.


Assuntos
Arsenicais/química , Gálio/química , Manganês/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Condutividade Elétrica , Transporte de Elétrons , Teste de Materiais , Temperatura , Condutividade Térmica
7.
Nano Lett ; 11(9): 3935-40, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21848314

RESUMO

We report on highly Mn-doped GaAs nanowires (NWs) of high crystalline quality fabricated by ion beam implantation, a technique that allows doping concentrations beyond the equilibrium solubility limit. We studied two approaches for the preparation of Mn-doped GaAs NWs: First, ion implantation at room temperature with subsequent annealing resulted in polycrystalline NWs and phase segregation of MnAs and GaAs. The second approach was ion implantation at elevated temperatures. In this case, the single-crystallinity of the GaAs NWs was maintained, and crystalline, highly Mn-doped GaAs NWs were obtained. The electrical resistance of such NWs dropped with increasing temperature (activation energy about 70 meV). Corresponding magnetoresistance measurements showed a decrease at low temperatures, indicating paramagnetism. Our findings suggest possibilities for future applications where dense arrays of GaMnAs nanowires may be used as a new kind of magnetic material system.

8.
Nat Mater ; 6(9): 648-51, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17660824

RESUMO

Recent advances in nanoscience have raised interest in the minimum bit size required for classical information storage. This bit size is determined by the necessity for bistability with suppressed quantum tunnelling and energy barriers that exceed ambient temperatures. In the case of magnetic information storage, much attention has centred on molecular magnets with bits consisting of about 100 atoms, magnetic uniaxial anisotropy energy barriers of about 50 K and very slow relaxation at low temperatures. Here, we draw attention to the remarkable magnetic properties of some transition-metal dimers, which have energy barriers approaching 500 K with only two atoms. The spin dynamics of these ultrasmall nanomagnets is strongly affected by a Berry phase, which arises from quasi-degeneracies at the electronic highest occupied molecular orbital energy. In a giant-spin approximation, this Berry phase makes the effective reversal barrier thicker.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...