Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RNA Biol ; 20(1): 368-383, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37339263

RESUMO

The TP53 and PTEN tumour suppressor genes are inactivated by nonsense mutations in a significant fraction of human tumours. TP53 nonsense mutatant tumours account for approximately one million new cancer cases per year worldwide. We have screened chemical libraries with the aim of identifying compounds that induce translational readthrough and expression of full-length p53 protein in cells with nonsense mutation in this gene. Here we describe two novel compounds with readthrough activity, either alone or in combination with other known readthrough-promoting substances. Both compounds induced levels of full-length p53 in cells carrying R213X nonsense mutant TP53. Compound C47 showed synergy with the aminoglycoside antibiotic and known readthrough inducer G418, whereas compound C61 synergized with eukaryotic release factor 3 (eRF3) degraders CC-885 and CC-90009. C47 alone showed potent induction of full-length PTEN protein in cells with different PTEN nonsense mutations. These results may facilitate further development of novel targeted cancer therapy by pharmacological induction of translational readthrough.


Assuntos
Aminoglicosídeos , Neoplasias , Humanos , Aminoglicosídeos/farmacologia , Códon sem Sentido , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Antibacterianos/farmacologia , Inibidores da Síntese de Proteínas
2.
Neuro Oncol ; 25(1): 97-107, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35738865

RESUMO

BACKGROUND: Malignant gliomas, the most common malignant brain tumors in adults, represent a heterogeneous group of diseases with poor prognosis. Retroviruses can cause permanent genetic alterations that modify genes close to the viral integration site. METHODS: Here we describe the use of a high-throughput pipeline coupled to the commonly used tissue-specific retroviral RCAS-TVA mouse tumor model system. Utilizing next-generation sequencing, we show that retroviral integration sites can be reproducibly detected in malignant stem cell lines generated from RCAS-PDGFB-driven glioma biopsies. RESULTS: A large fraction of common integration sites contained genes that have been dysregulated or misexpressed in glioma. Others overlapped with loci identified in previous glioma-related forward genetic screens, but several novel putative cancer-causing genes were also found. Integrating retroviral tagging and clinical data, Ppfibp1 was highlighted as a frequently tagged novel glioma-causing gene. Retroviral integrations into the locus resulted in Ppfibp1 upregulation, and Ppfibp1-tagged cells generated tumors with shorter latency on orthotopic transplantation. In human gliomas, increased PPFIBP1 expression was significantly linked to poor prognosis and PDGF treatment resistance. CONCLUSIONS: Altogether, the current study has demonstrated a novel approach to tagging glioma genes via forward genetics, validating previous results, and identifying PPFIBP1 as a putative oncogene in gliomagenesis.


Assuntos
Neoplasias Encefálicas , Glioma , Animais , Humanos , Camundongos , Neoplasias Encefálicas/patologia , Estudos de Associação Genética , Glioma/patologia , Oncogenes , Proteínas Proto-Oncogênicas c-sis/genética
3.
Cancer Res ; 82(24): 4586-4603, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36219398

RESUMO

Relapse is the leading cause of death in patients with medulloblastoma, the most common malignant pediatric brain tumor. A better understanding of the mechanisms underlying recurrence could lead to more effective therapies for targeting tumor relapses. Here, we observed that SOX9, a transcription factor and stem cell/glial fate marker, is limited to rare, quiescent cells in high-risk medulloblastoma with MYC amplification. In paired primary-recurrent patient samples, SOX9-positive cells accumulated in medulloblastoma relapses. SOX9 expression anti-correlated with MYC expression in murine and human medulloblastoma cells. However, SOX9-positive cells were plastic and could give rise to a MYC high state. To follow relapse at the single-cell level, an inducible dual Tet model of medulloblastoma was developed, in which MYC expression was redirected in vivo from treatment-sensitive bulk cells to dormant SOX9-positive cells using doxycycline treatment. SOX9 was essential for relapse initiation and depended on suppression of MYC activity to promote therapy resistance, epithelial-mesenchymal transition, and immune escape. p53 and DNA repair pathways were downregulated in recurrent tumors, whereas MGMT was upregulated. Recurrent tumor cells were found to be sensitive to treatment with an MGMT inhibitor and doxorubicin. These findings suggest that recurrence-specific targeting coupled with DNA repair inhibition comprises a potential therapeutic strategy in patients affected by medulloblastoma relapse. SIGNIFICANCE: SOX9 facilitates therapy escape and recurrence in medulloblastoma via temporal inhibition of MYC/MYCN genes, revealing a strategy to specifically target SOX9-positive cells to prevent tumor relapse.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Animais , Humanos , Camundongos , Neoplasias Cerebelares/patologia , Meduloblastoma/patologia , Recidiva Local de Neoplasia/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição/metabolismo
4.
Mol Ther Oncolytics ; 21: 356-366, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34141872

RESUMO

Oncolytic viruses (OVs) represent promising therapeutic agents for cancer therapy by selective oncolysis and induction of anti-tumor immunity. OVs can be engineered to express tumor-associated antigens and immune-modulating agents to provoke stronger antitumor immunity. Here, we engineered vaccinia virus (VV) and Semliki Forest virus (SFV) to express neuroblastoma-associated antigen disialoganglioside (GD2) and the immune modulator Helicobacter pylori neutrophil-activating protein (NAP) and compared their therapeutic potency. Oncolytic VV did not exhibit any antitumor benefits, whereas SFV was able to delay subcutaneous neuroblastoma (NXS2) tumor growth. Additional expression of the GD2 mimotope (GD2m) by VV-GD2m or SFV-GD2m did not improve their anti-tumor capacity compared to the parent viruses. Further arming these OVs with NAP resulted in contrasting anti-tumor efficacy. VV (VV-GD2m-NAP) significantly improved therapeutic efficacy compared to VV-GD2m, which was also associated with a significantly elevated anti-GD2 antibody, whereas there was no additive antitumor efficacy for SFV-GD2m-NAP compared to SFV-GD2m, nor was the anti-GD2 antibody response improved. Instead, NAP induced higher neutralizing antibodies against SFV. These observations suggest that distinct immune stimulation profiles are elicited when the same immunostimulatory factor is expressed by different OVs. Therefore, careful consideration and detailed characterization are needed when engineering OVs with immune-modulators.

5.
Front Oncol ; 10: 626751, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585252

RESUMO

Misregulation of MYC genes, causing MYC overexpression or protein stabilization, is frequently found in malignant brain tumors highlighting their important roles as oncogenes. Brain tumors in children are the most lethal of all pediatric malignancies and the most common malignant primary adult brain tumor, glioblastoma, is still practically incurable. MYCN is one of three MYC family members and is crucial for normal brain development. It is associated with poor prognosis in many malignant pediatric brain tumor types and is focally amplified in specific adult brain tumors. Targeting MYCN has proved to be challenging due to its undruggable nature as a transcription factor and for its importance in regulating developmental programs also in healthy cells. In this review, we will discuss efforts made to circumvent the difficulty of targeting MYCN specifically by using direct or indirect measures to treat MYCN-driven brain tumors. We will further consider the mechanism of action of these measures and suggest which molecularly defined brain tumor patients that might benefit from MYCN-directed precision therapies.

6.
Cell Stem Cell ; 25(6): 855-870.e11, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31786016

RESUMO

Medulloblastoma (MB), the most frequent malignant childhood brain tumor, can arise from cellular malfunctions during hindbrain development. Here we generate humanized models for Sonic Hedgehog (SHH)-subgroup MB via MYCN overexpression in primary human hindbrain-derived neuroepithelial stem (hbNES) cells or iPSC-derived NES cells, which display a range of aggressive phenotypes upon xenografting. iPSC-derived NES tumors develop quickly with leptomeningeal dissemination, whereas hbNES-derived cells exhibit delayed tumor formation with less dissemination. Methylation and expression profiling show that tumors from both origins recapitulate hallmarks of infant SHH MB and reveal that mTOR activation, as a result of increased Oct4, promotes aggressiveness of human SHH tumors. Targeting mTOR decreases cell viability and prolongs survival, showing the utility of these varied models for dissecting mechanisms mediating tumor aggression and demonstrating the value of humanized models for a better understanding of pediatric cancers.


Assuntos
Meduloblastoma/metabolismo , Meduloblastoma/patologia , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular , Proliferação de Células/genética , Proliferação de Células/fisiologia , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Feminino , Imunofluorescência , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Imuno-Histoquímica , Meduloblastoma/genética , Camundongos , Fator 3 de Transcrição de Octâmero/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/genética
7.
Cell Death Dis ; 10(12): 881, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31754113

RESUMO

Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor in adults. Patients usually undergo surgery followed by aggressive radio- and chemotherapy with the alkylating agent temozolomide (TMZ). Still, median survival is only 12-15 months after diagnosis. Many human cancers including GBMs demonstrate addiction to MYC transcription factor signaling and can become susceptible to inhibition of MYC downstream genes. JQ1 is an effective inhibitor of BET Bromodomains, a class of epigenetic readers regulating expression of downstream MYC targets. Here, we show that BET inhibition decreases viability of patient-derived GBM cell lines. We propose a distinct expression signature of MYCN-elevated GBM cells that correlates with significant sensitivity to BET inhibition. In tumors showing JQ1 sensitivity, we found enrichment of pathways regulating cell cycle, DNA damage response and repair. As DNA repair leads to acquired chemoresistance to TMZ, JQ1 treatment in combination with TMZ synergistically inhibited proliferation of MYCN-elevated cells. Bioinformatic analyses further showed that the expression of MYCN correlates with Aurora Kinase A levels and Aurora Kinase inhibitors indeed showed synergistic efficacy in combination with BET inhibition. Collectively, our data suggest that BET inhibitors could potentiate the efficacy of either TMZ or Aurora Kinase inhibitors in GBM treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Aurora Quinase A/antagonistas & inibidores , Neoplasias Encefálicas/tratamento farmacológico , Proteína Proto-Oncogênica N-Myc/genética , Proteínas/antagonistas & inibidores , Adulto , Idoso , Azepinas/administração & dosagem , Azepinas/farmacologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Feminino , Glioblastoma/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Proto-Oncogênica N-Myc/biossíntese , Proteína Proto-Oncogênica N-Myc/metabolismo , Temozolomida/administração & dosagem , Temozolomida/farmacologia , Triazóis/administração & dosagem , Triazóis/farmacologia
8.
EMBO J ; 35(20): 2192-2212, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27625374

RESUMO

SOX9 is a master transcription factor that regulates development and stem cell programs. However, its potential oncogenic activity and regulatory mechanisms that control SOX9 protein stability are poorly understood. Here, we show that SOX9 is a substrate of FBW7, a tumor suppressor, and a SCF (SKP1/CUL1/F-box)-type ubiquitin ligase. FBW7 recognizes a conserved degron surrounding threonine 236 (T236) in SOX9 that is phosphorylated by GSK3 kinase and consequently degraded by SCFFBW7α Failure to degrade SOX9 promotes migration, metastasis, and treatment resistance in medulloblastoma, one of the most common childhood brain tumors. FBW7 is either mutated or downregulated in medulloblastoma, and in cases where FBW7 mRNA levels are low, SOX9 protein is significantly elevated and this phenotype is associated with metastasis at diagnosis and poor patient outcome. Transcriptional profiling of medulloblastoma cells expressing a degradation-resistant SOX9 mutant reveals activation of pro-metastatic genes and genes linked to cisplatin resistance. Finally, we show that pharmacological inhibition of PI3K/AKT/mTOR pathway activity destabilizes SOX9 in a GSK3/FBW7-dependent manner, rendering medulloblastoma cells sensitive to cytostatic treatment.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box/metabolismo , Meduloblastoma/metabolismo , Fatores de Transcrição SOX9/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Compostos de Anilina/farmacologia , Animais , Benzamidas , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular , Cromonas/farmacologia , Cisplatino/farmacologia , Proteínas F-Box/genética , Proteína 7 com Repetições F-Box-WD , Quinase 3 da Glicogênio Sintase/metabolismo , Células HEK293 , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Camundongos Nus , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Pirróis/farmacologia , Fatores de Transcrição SOX9/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
9.
Cell Tissue Res ; 359(1): 225-54, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25416506

RESUMO

Neurogenesis, the generation of new neurons, is deregulated in neural stem cell (NSC)- and progenitor-derived murine models of malignant medulloblastoma and glioma, the most common brain tumors of children and adults, respectively. Molecular characterization of human malignant brain tumors, and in particular brain tumor stem cells (BTSCs), has identified neurodevelopmental transcription factors, microRNAs, and epigenetic factors known to inhibit neuronal and glial differentiation. We are starting to understand how these factors are regulated by the major oncogenic drivers in malignant brain tumors. In this review, we will focus on the molecular switches that block normal neuronal differentiation and induce brain tumor formation. Genetic or pharmacological manipulation of these switches in BTSCs has been shown to restore the ability of tumor cells to differentiate. We will discuss potential brain tumor therapies that will promote differentiation in order to reduce treatment resistance, suppress tumor growth, and prevent recurrence in patients.


Assuntos
Neoplasias Encefálicas/patologia , Diferenciação Celular , Animais , Neoplasias Encefálicas/genética , Carcinogênese/patologia , Proliferação de Células , Epigênese Genética , Humanos , Neurogênese
10.
Hum Gene Ther ; 24(8): 766-75, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23889332

RESUMO

Secretogranin III (SGC3) belongs to the granin family and is highly expressed in endocrine and neural tissues. The human SCG3 promoter has not yet been characterized. We identified that a 0.5-kb DNA fragment upstream of the SCG3 gene can selectively drive transgene expression in neuroblastoma cell lines. The strength of transgene expression was further increased, with specificity maintained, by addition of the human achaete-scute complex homolog 1 (ASH1) enhancer. We developed an oncolytic serotype 5-based adenovirus, in which the SCG3 promoter and ASH1 enhancer drive E1A gene expression. The virus was further modified with a cell-penetrating peptide (Tat-PTD) in the viral capsid, which we have previously shown results in increased adenovirus transduction efficiency of many neuroblastoma cell lines. The virus, Ad5PTD(ASH1-SCG3-E1A), shows selective and efficient killing of neuroblastoma cell lines in vitro, including cisplatin-, etoposide-, and doxorubicin-insensitive neuroblastoma cells. Furthermore, it delays tumor growth and thereby prolonged survival for nude mice harboring subcutaneous human neuroblastoma xenograft. In conclusion, we report a novel oncolytic adenovirus with potential use for neuroblastoma therapy.


Assuntos
Adenoviridae/genética , Proteínas E1A de Adenovirus/uso terapêutico , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Peptídeos Penetradores de Células/uso terapêutico , Elementos Facilitadores Genéticos , Terapia Genética , Neuroblastoma/terapia , Vírus Oncolíticos/genética , Regiões Promotoras Genéticas , Proteínas E1A de Adenovirus/genética , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/genética , Feminino , Humanos , Camundongos , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...