Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 111(24): 4040-4057.e6, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863038

RESUMO

Glial cells support the function of neurons. Recent evidence shows that astrocytes are also involved in brain computations. To explore whether and how their excitable nature affects brain computations and motor behaviors, we used two-photon Ca2+ imaging of zebrafish larvae expressing GCaMP in both neurons and radial astrocytes (RAs). We found that in the optic tectum, RAs synchronize their Ca2+ transients immediately after the end of an escape behavior. Using optogenetics, ablations, and a genetically encoded norepinephrine sensor, we observed that RA synchronous Ca2+ events are mediated by the locus coeruleus (LC)-norepinephrine circuit. RA synchronization did not induce direct excitation or inhibition of tectal neurons. Nevertheless, it modulated the direction selectivity and the long-distance functional correlations among neurons. This mechanism supports freezing behavior following a switch to an alerted state. These results show that LC-mediated neuro-glial interactions modulate the visual system during transitions between behavioral states.


Assuntos
Astrócitos , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Neurônios/fisiologia , Colículos Superiores/fisiologia , Norepinefrina
2.
Commun Biol ; 5(1): 113, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132142

RESUMO

Somitogenesis, the segmentation of the antero-posterior axis in vertebrates, is thought to result from the interactions between a genetic oscillator and a posterior-moving determination wavefront. The segment (somite) size is set by the product of the oscillator period and the velocity of the determination wavefront. Surprisingly, while the segmentation period can vary by a factor three between 20 °C and 32 °C, the somite size is constant. How this temperature independence is achieved is a mystery that we address in this study. Using RT-qPCR we show that the endogenous fgf8 mRNA concentration decreases during somitogenesis and correlates with the exponent of the shrinking pre-somitic mesoderm (PSM) size. As the temperature decreases, the dynamics of fgf8 and many other gene transcripts, as well as the segmentation frequency and the PSM shortening and tail growth rates slows down as T-Tc (with Tc = 14.4 °C). This behavior characteristic of a system near a critical point may account for the temperature independence of somitogenesis in zebrafish.


Assuntos
Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/fisiologia , Fator 8 de Crescimento de Fibroblasto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Animais , Desenvolvimento Embrionário/genética , Fator 8 de Crescimento de Fibroblasto/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peixe-Zebra , p-Aminoazobenzeno/análogos & derivados , p-Aminoazobenzeno/farmacologia
3.
Curr Biol ; 27(12): 1707-1720.e5, 2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28578928

RESUMO

From development up to adulthood, the vertebrate brain is continuously supplied with newborn neurons that integrate into established mature circuits. However, how this process is coordinated during development remains unclear. Using two-photon imaging, GCaMP5 transgenic zebrafish larvae, and sparse electroporation in the larva's optic tectum, we monitored spontaneous and induced activity of large neuronal populations containing newborn and functionally mature neurons. We observed that the maturation of newborn neurons is a 4-day process. Initially, newborn neurons showed undeveloped dendritic arbors, no neurotransmitter identity, and were unresponsive to visual stimulation, although they displayed spontaneous calcium transients. Later on, newborn-labeled neurons began to respond to visual stimuli but in a very variable manner. At the end of the maturation period, newborn-labeled neurons exhibited visual tuning curves (spatial receptive fields and direction selectivity) and spontaneous correlated activity with neighboring functionally mature neurons. At this developmental stage, newborn-labeled neurons presented complex dendritic arbors and neurotransmitter identity (excitatory or inhibitory). Removal of retinal inputs significantly perturbed the integration of newborn neurons into the functionally mature tectal network. Our results provide a comprehensive description of the maturation of newborn neurons during development and shed light on potential mechanisms underlying their integration into a functionally mature neuronal circuit.


Assuntos
Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Percepção Visual/fisiologia , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados/fisiologia
4.
Cell Rep ; 19(5): 939-948, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28467907

RESUMO

The brain is spontaneously active, even in the absence of sensory stimulation. The functionally mature zebrafish optic tectum shows spontaneous activity patterns reflecting a functional connectivity adapted for the circuit's functional role and predictive of behavior. However, neither the emergence of these patterns during development nor the role of retinal inputs in their maturation has been characterized. Using two-photon calcium imaging, we analyzed spontaneous activity in intact and enucleated zebrafish larvae throughout tectum development. At the onset of retinotectal connections, intact larvae showed major changes in the spatiotemporal structure of spontaneous activity. Although the absence of retinal inputs had a significant impact on the development of the temporal structure, the tectum was still capable of developing a spatial structure associated with the circuit's functional roles and predictive of behavior. We conclude that neither visual experience nor intrinsic retinal activity is essential for the emergence of a spatially structured functional circuit.


Assuntos
Retina/fisiologia , Colículos Superiores/fisiologia , Percepção Visual , Animais , Sinalização do Cálcio , Estimulação Luminosa , Retina/crescimento & desenvolvimento , Retina/metabolismo , Colículos Superiores/crescimento & desenvolvimento , Vias Visuais/crescimento & desenvolvimento , Vias Visuais/fisiologia , Peixe-Zebra
6.
Cell Rep ; 17(4): 1098-1112, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27760314

RESUMO

Following moving visual stimuli (conditioning stimuli, CS), many organisms perceive, in the absence of physical stimuli, illusory motion in the opposite direction. This phenomenon is known as the motion aftereffect (MAE). Here, we use MAE as a tool to study the neuronal basis of visual motion perception in zebrafish larvae. Using zebrafish eye movements as an indicator of visual motion perception, we find that larvae perceive MAE. Blocking eye movements using optogenetics during CS presentation did not affect MAE, but tectal ablation significantly weakened it. Using two-photon calcium imaging of behaving GCaMP3 larvae, we find post-stimulation sustained rhythmic activity among direction-selective tectal neurons associated with the perception of MAE. In addition, tectal neurons tuned to the CS direction habituated, but neurons in the retina did not. Finally, a model based on competition between direction-selective neurons reproduced MAE, suggesting a neuronal circuit capable of generating perception of visual motion.


Assuntos
Encéfalo/fisiologia , Percepção de Movimento/fisiologia , Percepção Visual/fisiologia , Peixe-Zebra/fisiologia , Animais , Condicionamento Psicológico , Movimentos Oculares/fisiologia , Pós-Efeito de Figura/fisiologia , Habituação Psicofisiológica , Larva/fisiologia , Modelos Biológicos , Modelos Neurológicos , Movimento , Neurônios/fisiologia , Optogenética , Colículos Superiores/fisiologia , Cauda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...