Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38003350

RESUMO

Mesoporous silica nanoparticles (MSNs) are amongst the most used nanoparticles in biomedicine. However, the potentially toxic effects of MSNs have not yet been fully evaluated, being a controversial matter in research. In this study, bare MSNs, PEGylated MSNs (MSNs-PEG), and galacto-oligosaccharide-functionalized MSNs (MSNs-GAL) are synthesized and characterized to assess their genotoxicity and transforming ability on human lung epithelial BEAS-2B cells in short- (48 h) and long-term (8 weeks) exposure scenarios. Initial short-term treatments show a dose-dependent increase in genotoxicity for MSNs-PEG-treated cells but not oxidative DNA damage for MSNs, MSNs-PEG, or for MSNs-GAL. In addition, after 8 weeks of continuous exposure, neither induced genotoxic nor oxidative DNA is observed. Nevertheless, long-term treatment with MSNs-PEG and MSNs-GAL, but not bare MSNs, induces cell transformation features, as evidenced by the cell's enhanced ability to grow independently of anchorage, to migrate, and to invade. Further, the secretome from cells treated with MSNs and MSNs-GAL, but not MSNs-PEG, shows certain tumor-promoting abilities, increasing the number and size of HeLa cell colonies formed in the indirect soft-agar assay. These results show that MSNs, specifically the functionalized ones, provoke some measurable adverse effects linked to tumorigenesis. These effects are in the order of other nanomaterials, such as carbon nanotubes or cerium dioxide nanoparticles, but they are lower than those provoked by some approved drugs, such as doxorubicin or dexamethasone.


Assuntos
Nanopartículas , Nanotubos de Carbono , Humanos , Células HeLa , Dióxido de Silício/toxicidade , Nanopartículas/toxicidade , Polietilenoglicóis , Porosidade
2.
ACS Appl Mater Interfaces ; 15(32): 38323-38334, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37549382

RESUMO

Despite advances in breast cancer treatment, it remains the leading cause of cancer-related death in women worldwide. In this context, microRNAs have emerged as potential therapeutic targets but still present some limitations for in vivo applications. Particularly, miR-200c-3p is a well-known tumor suppressor microRNA that inhibits tumor progression and metastasis in breast cancer through downregulating ZEB1 and ZEB2. Based on the above, we describe the design and validation of a nanodevice using mesoporous silica nanoparticles for miR-200c-3p delivery for breast cancer treatment. We demonstrate the biocompatibility of the synthesized nanodevices as well as their ability to escape from endosomes/lysosomes and inhibit tumorigenesis, invasion, migration, and proliferation of tumor cells in vitro. Moreover, tumor targeting and effective delivery of miR-200c-3p from the nanoparticles in vivo are confirmed in an orthotopic breast cancer mouse model, and the therapeutic efficacy is also evidenced by a decrease in tumor size and lung metastasis, while showing no signs of toxicity. Overall, our results provide evidence that miR-200c-3p-loaded nanoparticles are a potential strategy for breast cancer therapy and a safe and effective system for tumor-targeted delivery of microRNAs.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Nanopartículas , Feminino , Camundongos , Animais , Dióxido de Silício , MicroRNAs/genética , Neoplasias Pulmonares/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proliferação de Células/genética
4.
Nanomaterials (Basel) ; 11(5)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069171

RESUMO

We report herein a gene-directed enzyme prodrug therapy (GDEPT) system using gated mesoporous silica nanoparticles (MSNs) in an attempt to combine the reduction of side effects characteristic of GDEPT with improved pharmacokinetics promoted by gated MSNs. The system consists of the transfection of cancer cells with a plasmid controlled by the cytomegalovirus promoter, which promotes ß-galactosidase (ß-gal) expression from the bacterial gene lacZ (CMV-lacZ). Moreover, dendrimer-like mesoporous silica nanoparticles (DMSNs) are loaded with the prodrug doxorubicin modified with a galactose unit through a self-immolative group (DOXO-Gal) and modified with a disulfide-containing polyethyleneglycol gatekeeper. Once in tumor cells, the reducing environment induces disulfide bond rupture in the gatekeeper with the subsequent DOXO-Gal delivery, which is enzymatically converted by ß-gal into the cytotoxic doxorubicin drug, causing cell death. The combined treatment of the pair enzyme/DMSNs-prodrug are more effective in killing cells than the free prodrug DOXO-Gal alone in cells transfected with ß-gal.

5.
Pharmaceutics ; 12(11)2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33233423

RESUMO

In recent times, many approaches have been developed against drug resistant Gram-negative bacteria. However, low-cost high effective materials which could broaden the spectrum of antibiotics are still needed. In this study, enhancement of linezolid spectrum, normally active against Gram-positive bacteria, was aimed for Gram-negative bacteria growth inhibition. For this purpose, a silica xerogel prepared from a low-cost precursor is used as a drug carrier owing to the advantages of its mesoporous structure, suitable pore and particle size and ultralow density. The silica xerogel is loaded with linezolid and capped with ε-poly-l-lysine. The developed nano-formulation shows a marked antibacterial activity against to Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. In comparison to free linezolid and ε-poly-l-lysine, the material demonstrates a synergistic effect on killing for the three tested bacteria. The results show that silica xerogels can be used as a potential drug carrier and activity enhancer. This strategy could provide the improvement of antibacterial activity spectrum of antibacterial agents like linezolid and could represent a powerful alternative to overcome antibiotic resistance in a near future.

6.
Chemistry ; 26(69): 16318-16327, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-32735063

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype. In the last years, navitoclax has emerged as a possible treatment for TNBC. Nevertheless, rapid navitoclax resistance onset has been observed thorough Mcl-1 overexpression. As a strategy to overcome Mcl-1-mediated resistance, herein we present a controlled drug co-delivery system based on mesoporous silica nanoparticles (MSNs) targeted to TNBC cells. The nanocarrier is loaded with navitoclax and the Mcl-1 inhibitor S63845 and capped with a MUC1-targeting aptamer (apMUC1-MSNs(Nav/S63845)). The apMUC1-capped nanoparticles effectively target TNBC cell lines and successfully induce apoptosis, overcoming navitoclax resistance. Moreover, navitoclax encapsulation protects platelets against apoptosis. These results point apMUC1-gated MSNs as suitable BH3 mimetics nanocarriers in the targeted treatment of MUC1-expressing TNBC.


Assuntos
Compostos de Anilina/química , Mucina-1/química , Nanopartículas , Dióxido de Silício/química , Sulfonamidas/química , Neoplasias de Mama Triplo Negativas , Compostos de Anilina/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Mucina-1/genética , Mucina-1/metabolismo , Sulfonamidas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...