Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 23(10)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34682077

RESUMO

Active optical media leading to interaction Hamiltonians of the form H=λ˜(a+a†)ζ represent a crucial resource for quantum optical technology. In this paper, we address the characterization of those nonlinear media using quantum probes, as opposed to semiclassical ones. In particular, we investigate how squeezed probes may improve individual and joint estimation of the nonlinear coupling λ˜ and of the nonlinearity order ζ. Upon using tools from quantum estimation, we show that: (i) the two parameters are compatible, i.e., the may be jointly estimated without additional quantum noise; (ii) the use of squeezed probes improves precision at fixed overall energy of the probe; (iii) for low energy probes, squeezed vacuum represent the most convenient choice, whereas for increasing energy an optimal squeezing fraction may be determined; (iv) using optimized quantum probes, the scaling of the corresponding precision with energy improves, both for individual and joint estimation of the two parameters, compared to semiclassical coherent probes. We conclude that quantum probes represent a resource to enhance precision in the characterization of nonlinear media, and foresee potential applications with current technology.

2.
Phys Rev E ; 104(1-1): 014136, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34412220

RESUMO

Temperature fluctuations of a finite system follow the Landau bound δT^{2}=T^{2}/C(T) where C(T) is the heat capacity of the system. In turn, the same bound sets a limit to the precision of temperature estimation when the system itself is used as a thermometer. In this paper, we employ graph theory and the concept of Fisher information to assess the role of topology on the thermometric performance of a given system. We find that low connectivity is a resource to build precise thermometers working at low temperatures, whereas highly connected systems are suitable for higher temperatures. Upon modeling the thermometer as a set of vertices for the quantum walk of an excitation, we compare the precision achievable by position measurement to the optimal one, which itself corresponds to energy measurement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...