Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38826367

RESUMO

Preclinical methods are needed for screening potential Alzheimer's disease (AD) therapeutics that recapitulate phenotypes found in the Mild Cognitive Impairment (MCI) stage or even before this stage of the disease. This would require a phenotypic system that reproduces cognitive deficits without significant neuronal cell death to mimic the clinical manifestations of AD during these stages. A potential functional parameter to be monitored is long-term potentiation (LTP), which is a correlate of learning and memory, that would be one of the first functions effected by AD onset. Mature human iPSC-derived cortical neurons and primary astrocytes were co-cultured on microelectrode arrays (MEA) where surface chemistry was utilized to create circuit patterns connecting two adjacent electrodes to model LTP function. LTP maintenance was significantly reduced in the presence of Amyloid-Beta 42 (Aß42) oligomers compared to the controls, however, co-treatment with AD therapeutics (Donepezil, Memantine, Rolipram and Saracatinib) corrected Aß42 induced LTP impairment. The results presented here illustrate the significance of the system as a validated platform that can be utilized to model and study MCI AD pathology, and potentially for the pre-MCI phase before the occurrence of significant cell death. It also has the potential to become an ideal platform for high content therapeutic screening for other neurodegenerative diseases.

2.
Stem Cell Reports ; 17(1): 96-109, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34942087

RESUMO

The maturation and functional characteristics of human induced pluripotent stem cell (hiPSC)-cortical neurons has not been fully documented. This study developed a phenotypic model of hiPSC-derived cortical neurons, characterized their maturation process, and investigated its application for disease modeling with the integration of multi-electrode array (MEA) technology. Immunocytochemistry analysis indicated early-stage neurons (day 21) were simultaneously positive for both excitatory (vesicular glutamate transporter 1 [VGlut1]) and inhibitory (GABA) markers, while late-stage cultures (day 40) expressed solely VGlut1, indicating a purely excitatory phenotype without containing glial cells. This maturation process was further validated utilizing patch clamp and MEA analysis. Particularly, induced long-term potentiation (LTP) successfully persisted for 1 h in day 40 cultures, but only achieved LTP in the presence of the GABAA receptor antagonist picrotoxin in day 21 cultures. This system was also applied to epilepsy modeling utilizing bicuculline and its correction utilizing the anti-epileptic drug valproic acid.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Potenciais de Ação , Técnicas de Cultura de Células , Terapia Baseada em Transplante de Células e Tecidos , Células Cultivadas , Humanos , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/terapia , Sinapses/metabolismo
3.
Alzheimers Dement (N Y) ; 6(1): e12029, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32490141

RESUMO

INTRODUCTION: The quest to identify an effective therapeutic strategy for neurodegenerative diseases, such as mild congitive impairment (MCI) and Alzheimer's disease (AD), suffers from the lack of good human-based models. Animals represent the most common models used in basic research and drug discovery studies. However, safe and effective compounds identified in animal studies often translate poorly to humans, yielding unsuccessful clinical trials. METHODS: A functional in vitro assay based on long-term potentiation (LTP) was used to demonstrate that exposure to amyloid beta (Aß42) and tau oligomers, or brain extracts from AD transgenic mice led to prominent changes in human induced pluripotent stem cells (hiPSC)-derived cortical neurons, notably, without cell death. RESULTS: Impaired information processing was demonstrated by treatment of neuron-MEA (microelectrode array) systems with the oligomers and brain extracts by reducing the effects of LTP induction. These data confirm the neurotoxicity of molecules linked to AD pathology and indicate the utility of this human-based system to model aspects of AD in vitro and study LTP deficits without loss of viability; a phenotype that more closely models the preclinical or early stage of AD. DISCUSSION: In this study, by combining multiple relevant and important molecular and technical aspects of neuroscience research, we generated a new, fully human in vitro system to model and study AD at the preclinical stage. This system can serve as a novel drug discovery platform to identify compounds that rescue or alleviate the initial neuronal deficits caused by Aß42 and/or tau oligomers, a main focus of clinical trials.

4.
Front Genet ; 10: 1092, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31788001

RESUMO

Evidence from multiple laboratories has accumulated to show that mosaic neuronal aneuploidy and consequent apoptosis characterizes and may underlie neuronal loss in many neurodegenerative diseases, particularly Alzheimer's disease and frontotemporal dementia. Furthermore, several neurodevelopmental disorders, including Seckel syndrome, ataxia telangiectasia, Nijmegen breakage syndrome, Niemann-Pick type C, and Down syndrome, have been shown to also exhibit mosaic aneuploidy in neurons in the brain and in other cells throughout the body. Together, these results indicate that both neurodegenerative and neurodevelopmental disorders with apparently different pathogenic causes share a cell cycle defect that leads to mosaic aneuploidy in many cell types. When such mosaic aneuploidy arises in neurons in the brain, it promotes apoptosis and may at least partly underlie the cognitive deficits that characterize the neurological symptoms of these disorders. These findings have implications for both diagnosis and treatment/prevention.

5.
Mol Biol Cell ; 29(5): 575-586, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29282277

RESUMO

Mutant Tau (MAPT) can lead to frontotemporal lobar degeneration (FTLD). Previous studies associated MAPT mutations and altered function with aneuploidy and chromosome instability in human lymphocytes and in Drosophila development. Here we examine whether FTLD-causing mutations in human MAPT induce aneuploidy and apoptosis in the mammalian brain. First, aneuploidy was found in brain cells from MAPT mutant transgenic mice expressing FTLD mutant human MAPT. Then brain neurons from mice homozygous or heterozygous for the Tau (Mapt) null allele were found to exhibit increasing levels of aneuploidy with decreasing Tau gene dosage. To determine whether aneuploidy leads to neurodegeneration in FTLD, we measured aneuploidy and apoptosis in brain cells from patients with MAPT mutations and identified both increased aneuploidy and apoptosis in the same brain neurons and glia. To determine whether there is a direct relationship between MAPT-induced aneuploidy and apoptosis, we expressed FTLD-causing mutant forms of MAPT in karyotypically normal human cells and found that they cause aneuploidy and mitotic spindle defects that then result in apoptosis. Collectively, our findings reveal a neurodegenerative pathway in FTLD-MAPT in which neurons and glia exhibit mitotic spindle abnormalities, chromosome mis-segregation, and aneuploidy, which then lead to apoptosis.


Assuntos
Aneuploidia , Apoptose , Degeneração Lobar Frontotemporal/genética , Neurônios/citologia , Proteínas tau/genética , Animais , Dosagem de Genes , Heterozigoto , Homozigoto , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Neurônios/patologia
6.
Curr Alzheimer Res ; 13(1): 7-17, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26651340

RESUMO

Trisomy 21 and the consequent extra copy of the amyloid precursor protein (APP) gene and increased beta-amyloid (Aß) peptide production underlie the universal development of Alzheimer's disease (AD) pathology and high risk of AD dementia in people with Down syndrome (DS). Trisomy 21 and other forms of aneuploidy also arise among neurons and peripheral cells in both sporadic and familial AD and in mouse and cell models thereof, reinforcing the conclusion that AD and DS are two sides of the same coin. The demonstration that 90% of the neurodegeneration in AD can be attributed to the selective loss of aneuploid neurons generated over the course of the disease indicates that aneuploidy is an essential feature of the pathogenic pathway leading to the depletion of neuronal cell populations. Trisomy 21 mosaicism also occurs in neurons and other cells from patients with Niemann-Pick C1 disease and from patients with familial or sporadic frontotemporal lobar degeneration (FTLD), as well as in their corresponding mouse and cell models. Biochemical studies have shown that Aß induces mitotic spindle defects, chromosome mis-segregation, and aneuploidy in cultured cells by inhibiting specific microtubule motors required for mitosis. These data indicate that neuronal trisomy 21 and other types of aneuploidy characterize and likely contribute to multiple neurodegenerative diseases and are a valid target for therapeutic intervention. For example, reducing extracellular calcium or treating cells with lithium chloride (LiCl) blocks the induction of trisomy 21 by Aß. The latter finding is relevant in light of recent reports of a lowered risk of dementia in bipolar patients treated with LiCl and in the stabilization of cognition in AD patients treated with LiCl.


Assuntos
Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Neurônios/patologia , Trissomia/genética , Dissomia Uniparental/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Ciclo Celular/genética , Cromossomos Humanos Par 21/genética , Humanos , Cloreto de Lítio/farmacologia , Camundongos , Mosaicismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Trissomia/patologia , Dissomia Uniparental/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...