Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Evol Appl ; 17(1): e13624, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38283607

RESUMO

Plants demonstrate exceptional variation in genome size across species, and their genome sizes can also vary dramatically across individuals and populations within species. This aspect of genetic variation can have consequences for traits and fitness, but few studies attributed genome size differentiation to ecological and evolutionary processes. Biological invasions present particularly useful natural laboratories to infer selective agents that might drive genome size shifts across environments and population histories. Here, we test hypotheses for the evolutionary causes of genome size variation across 14 invading populations of yellow starthistle, Centaurea solstitialis, in California, United States. We use a survey of genome sizes and trait variation to ask: (1) Is variation in genome size associated with developmental trait variation? (2) Are genome sizes smaller toward the leading edge of the expansion, consistent with selection for "colonizer" traits? Or alternatively, does genome size increase toward the leading edge of the expansion, consistent with predicted consequences of founder effects and drift? (3) Finally, are genome sizes smaller at higher elevations, consistent with selection for shorter development times? We found that 2C DNA content varied 1.21-fold among all samples, and was associated with flowering time variation, such that plants with larger genomes reproduced later, with lower lifetime capitula production. Genome sizes increased toward the leading edge of the invasion, but tended to decrease at higher elevations, consistent with genetic drift during range expansion but potentially strong selection for smaller genomes and faster development time at higher elevations. These results demonstrate how genome size variation can contribute to traits directly tied to reproductive success, and how selection and drift can shape that variation. We highlight the influence of genome size on dynamics underlying a rapid range expansion in a highly problematic invasive plant.

2.
Biol Lett ; 12(9)2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27677813

RESUMO

Climate change may soon threaten much of global biodiversity, especially if species cannot adapt to changing climatic conditions quickly enough. A critical question is how quickly climatic niches change, and if this speed is sufficient to prevent extinction as climates warm. Here, we address this question in the grass family (Poaceae). Grasses are fundamental to one of Earth's most widespread biomes (grasslands), and provide roughly half of all calories consumed by humans (including wheat, rice, corn and sorghum). We estimate rates of climatic niche change in 236 species and compare these with rates of projected climate change by 2070. Our results show that projected climate change is consistently faster than rates of niche change in grasses, typically by more than 5000-fold for temperature-related variables. Although these results do not show directly what will happen under global warming, they have troubling implications for a major biome and for human food resources.

3.
Mol Ecol ; 24(9): 2095-111, 2015 05.
Artigo em Inglês | MEDLINE | ID: mdl-25846825

RESUMO

The influence of genetic variation on invasion success has captivated researchers since the start of the field of invasion genetics 50 years ago. We review the history of work on this question and conclude that genetic variation-as surveyed with molecular markers-appears to shape invasion rarely. Instead, there is a significant disconnect between marker assays and ecologically relevant genetic variation in introductions. We argue that the potential for adaptation to facilitate invasion will be shaped by the details of genotypes affecting phenotypes, and we highlight three areas in which we see opportunities to make powerful new insights. (i) The genetic architecture of adaptive variation. Traits shaped by large-effect alleles may be strongly impacted by founder events yet more likely to respond to selection when genetic drift is strong. Large-effect loci may be especially relevant for traits involved in biotic interactions. (ii) Cryptic genetic variation exposed during invasion. Introductions have strong potential to uncover masked variation due to alterations in genetic and ecological environments. (iii) Genetic interactions during admixture of multiple source populations. As divergence among sources increases, positive followed by increasingly negative effects of admixture should be expected. Although generally hypothesized to be beneficial during invasion, admixture is most often reported among sources of intermediate divergence, supporting the possibility that incompatibilities among divergent source populations might be limiting their introgression. Finally, we note that these details of invasion genetics can be coupled with comparative demographic analyses to link genetic changes to the evolution of invasiveness itself.


Assuntos
Variação Genética , Genética Populacional , Espécies Introduzidas , Adaptação Biológica/genética , Evolução Biológica , Efeito Fundador , Deriva Genética , Genótipo , Mutação
4.
Nat Plants ; 12015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26770818

RESUMO

Non-native plants are now a pervasive feature of ecosystems across the globe1. One hypothesis for this pattern is that introduced species occupy open niches in recipient communities2,3. If true, then non-native plants should often benefit from low competition for limiting resources that define niches. Many plants have evolved larger size after introduction, consistent with increased access to limiting resources4-9. It has been difficult to test whether larger size reflects adaptation to exploit open resources, however, because vacant niches are generally challenging to identify in plants. Here we take advantage of a situation in which a highly invasive non-native plant, Centaurea solstitialis L. (yellow starthistle, hereafter 'YST'), occupies a well-described environmental niche, wherein water is a known limiting resource10,11. We use a glasshouse common environment and climatic niche modeling to reveal that invading YST has evolved a higher-fitness life history at the expense of increased dependence on water. Critically, historical declines in resident competitors have made water more available for introduced plants11,12, demonstrating how native biodiversity declines can open niches and create opportunities for introduced species to evolve increased resource use, a potentially widespread basis for introduction success and the evolution of invasive life histories.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA