Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 154: 213593, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37657278

RESUMO

Nanotechnology has revolutionized the field of therapeutics by introducing a plethora of nanomaterials capable of enhancing traditional drug efficacy or paving the way for innovative treatment methods. Within this domain, we propose a novel Cobalt-doped hollow polydopamine nanosphere system. This system, incorporating Doxorubicin loading and hyaluronic acid (HA) surface coating (CoHPDA@DOX-HA), is designed for combined tumor therapy. The overarching aim is to diminish the administration dosage, mitigate the cytotoxic side effects of chemotherapy drugs, augment chemosensitivity within neoplastic tissues, and attain superior results in tumor treatment via combined therapeutic strategies. The targeted molecule, hyaluronic acid (HA), amplifies the biocompatibility of CoHPDA@DOX-HA throughout circulation and fosters endocytosis of the nanoparticle system within cancer cells. This nanosphere system possesses pH sensitivity properties, allowing for a meticulous drug release within the acidic microenvironment of tumor cells. Concurrently, Polydopamine (PDA) facilitates proficient photothermal therapy upon exposure to 808 nm laser irradiation. This process further amplifies the Glutathione (GSH) depletion, and when coupled with the oxygen production capabilities of the Cobalt-doped hollow PDA, significantly enhances the chemo-photothermal therapeutic efficiency. Findings from the treatment of tumor-bearing mice substantiate that even at dosages equivalent to a singular DOX administration, the CoHPDA@DOX-HA can provide efficacious synergistic therapy. Therefore, it is anticipated that multifunctional nanomaterials with Photoacoustic Tomography (PAT) imaging capabilities, targeted delivery, and a controlled collaborative therapeutic framework may serve as promising alternatives for accurate diagnostics and efficacious treatment strategies.


Assuntos
Hipertermia Induzida , Neoplasias , Animais , Camundongos , Fototerapia , Oxigênio/uso terapêutico , Ácido Hialurônico/química , Ácido Hialurônico/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Doxorrubicina/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Glutationa , Microambiente Tumoral
2.
Nanotechnology ; 33(45)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35914421

RESUMO

To fabricate a novel stimuli-responsive system enabling controlled drug release and synergistic therapy, yolk-shell shaped bismuth sulfide modified with Au nanoparticles (Au-Bi2S3) was prepared. The Au-Bi2S3nanomaterial with heterojunction structure exhibited excellent photothermal conversion efficiency and considerable free radicals yield under laser irradiation. The drug delivery capacity was confirmed by co-loading Berberine hydrochloride (BBR) and a phase change material 1-tetradecanol (PCM), which could be responsible for NIR light induced thermal controlled drug release.In vitroinvestigation demonstrated that Au-Bi2S3has cell selectivity, and with the assistance of the properties of Au-Bi2S3, the loaded drug could give full play to their cancer cell inhibition ability. Our work highlights the great potential of this nanoplatform which could deliver and control Berberine hydrochloride release as well as realize the synergistic anti-tumor strategy of photothermal therapy, photodynamic therapy and chemotherapy for tumor therapy.


Assuntos
Berberina , Nanopartículas Metálicas , Nanopartículas , Neoplasias , Berberina/farmacologia , Berberina/uso terapêutico , Bismuto , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Ouro/química , Humanos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Preparações Farmacêuticas , Fototerapia , Sulfetos
3.
Mater Sci Eng C Mater Biol Appl ; 126: 112143, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34082954

RESUMO

Microbial contamination of water represents a great threat to the public health that has attracted worldwide attention. In this work, polypyrrole magnetic nanoparticles (Fe3O4@PPy NPs) with sterilization properties were fabricated. More specifically, the Fe3O4@PPy NPs obtained via aqueous dispersion polymerization and an in situ chemical oxidative polymerization exhibited a cationic surface and high photothermal conversion efficiency. More than 50% of bacteria adsorption can be achieved at a dosage of 100 µg/mL Fe3O4@PPy NPs under magnetic field, and high photothermal sterilization efficacy (~100%) can be obtained upon NIR exposure at the same dosage for 10 min. Noteworthy, the Fe3O4@PPy NPs can be recycled by magnetism and reused without affecting their photothermal sterilization capability. This study clearly provides experimental evidence of the great potential of Fe3O4@PPy NPs as stable and reusable nanocomposite materials for bacteria adsorption and photothermal sterilization performance. The application of Fe3O4@PPy NPs can realize enviromental-friendly bacterial contaminated water treatment as well as provide stratgies for synergistical antibacterial materials design.


Assuntos
Nanopartículas , Polímeros , Bactérias , Fototerapia , Pirróis
4.
Mol Ecol ; 28(1): 100-113, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30485593

RESUMO

Species introductions often bring together genetically divergent source populations, resulting in genetic admixture. This geographic reshuffling of diversity has the potential to generate favourable new genetic combinations, facilitating the establishment and invasive spread of introduced populations. Observational support for the superior performance of admixed introductions has been mixed, however, and the broad importance of admixture to invasion questioned. Under most underlying mechanisms, admixture's benefits should be expected to increase with greater divergence among and lower genetic diversity within source populations, though these effects have not been quantified in invaders. We experimentally crossed source populations differing in divergence in the invasive plant Centaurea solstitialis. Crosses resulted in many positive (heterotic) interactions, but fitness benefits declined and were ultimately negative at high source divergence, with patterns suggesting cytonuclear epistasis. We explored the literature to assess whether such negative epistatic interactions might be impeding admixture at high source population divergence. Admixed introductions reported for plants came from sources with a wide range of genetic variation, but were disproportionately absent where there was high genetic divergence among native populations. We conclude that while admixture is common in species introductions and often happens under conditions expected to be beneficial to invaders, these conditions may be constrained by predictable negative genetic interactions, potentially explaining conflicting evidence for admixture's benefits to invasion.


Assuntos
Centaurea/genética , Aptidão Genética/genética , Variação Genética , Genética Populacional , Deriva Genética , Genótipo , Vigor Híbrido , Espécies Introduzidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...