Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 328
Filtrar
1.
bioRxiv ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38853964

RESUMO

Alterations in the intestinal microbiota contribute to the pathogenesis of various cardiovascular disorders, but how they affect the development of Kawasaki disease (KD), an acute pediatric vasculitis, remains unclear. We report that depleting the gut microbiota reduces the development of cardiovascular inflammation in a murine model mimicking KD vasculitis. The development of cardiovascular lesions was associated with alterations in the intestinal microbiota composition and, notably, a decreased abundance of Akkermansia muciniphila and Faecalibacterium prausnitzii. Oral supplementation with either of these live or pasteurized individual bacteria, or with short-chain fatty acids (SCFAs) produced by them, attenuated cardiovascular inflammation. Treatment with Amuc_1100, the TLR-2 signaling outer membrane protein from A. muciniphila , also decreased the severity of vascular inflammation. This study reveals an underappreciated gut microbiota-cardiovascular inflammation axis in KD vasculitis pathogenesis and identifies specific intestinal commensals that regulate vasculitis in mice by producing metabolites or via extracellular proteins acting on gut barrier function. IN BRIEF: It remains unclear whether changes in the intestinal microbiota composition are involved in the development of cardiovascular lesions associated with Kawasaki disease (KD), an immune-mediated vasculitis. Jena et al. observe alterations in the intestinal microbiota composition of mice developing vasculitis, characterized by reduced A. muciniphila and F. prausnitzii . Oral supplementation with either of these bacteria, live or pasteurized, or with bacteria-produced short-chain fatty acids (SCFAs) or Amuc_1100, the TLR-2 signaling outer membrane protein of A. muciniphila , was sufficient to alleviate the development of cardiovascular lesions in mice by promoting intestinal barrier function. HIGHLIGHTS: Absence or depletion of the microbiota decreases the severity of vasculitis in a murine model mimicking KD vasculitis. Supplementation of B. wadsworthia and B. fragilis promotes murine KD vasculitis. Decreased abundances of F. prausnitzii and A. muciniphila are associated with the development of cardiovascular lesions in mice. Supplementation with either live or pasteurized A. muciniphila and F. prausnitzii, or the TLR-2 signaling Amuc_1100, reduces the severity of vasculitis by promoting gut barrier function.

2.
Front Microbiol ; 15: 1298432, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835485

RESUMO

Introduction: The gut barrier, comprising gut microbiota, plays a pivotal role in chronic kidney disease (CKD) progression and nutritional status. This study aimed to explore gut barrier alterations in hemodialyzed (HD) patients, non-HD (NHD) CKD patients, and healthy volunteers. Methods: Our cross-sectional study enrolled 22 HD patients, 11 NHD patients, and 11 healthy volunteers. We evaluated fecal microbiota composition (assessed via bacterial 16S rRNA gene sequencing), fecal IgA levels, surrogate markers of gut permeability, serum cytokines, appetite mediators, nutritional status, physical activity, and quality of life. Results: HD patients exhibited significant alterations in fecal microbiota composition compared to healthy volunteers, with observed shifts in taxa known to be associated with dietary patterns or producing metabolites acting on human host. In comparison to healthy volunteers, individuals with HD patients exhibited elevated levels of inflammatory markers (CRP, IL-6 and TNF-α), glucagon-like peptide-2, and potential anorexigenic markers (including leptin and peptide YY). NHD patients had increased levels of CRP and peptide YY. Overall fecal microbiota composition was associated with height, soft lean mass, resting energy expenditure, handgrip strength, bone mineral content and plasma albumin and TNF-α. Discussion: Compared to healthy volunteers, HD patients have an altered fecal microbiota composition, a higher systemic inflammation, and a modification in plasma levels of appetite mediators. While some differences align with previous findings, heterogeneity exists likely due to various factors including lifestyle and comorbidities. Despite limitations such as sample size, our study underscores the multifaceted interplay between gut microbiota, physiological markers, and kidney function, warranting further investigation in larger cohorts.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38899575

RESUMO

INTRODUCTION: Pasteurized human donor milk (DM) is frequently used for feeding preterm newborns and extrauterine growth-restricted (EUGR) infants. Most human milk banks performed a pasteurization of DM using the standard method of Holder pasteurization (HoP) which consists of heating milk at 62.5°C for 30 min. High hydrostatic pressure (HHP) processing was proposed to be an innovative nonthermal method to pasteurize DM. However, the effect of different modes of DM pasteurization on body growth, intestinal maturation, and microbiota has never been investigated in vivo during the lactation. OBJECTIVES: We aimed to study these effects in postnatally growth-restricted (PNGR) mice pups daily supplemented with HoP-DM or HHP-DM. METHODS: PNGR was induced by increasing the number of pups per litter (15 pups/mother) at postnatal Day 4 (PND4). From PND8 to PND20, mice pups were supplemented with HoP-DM or HHP-DM. At PND21, the intestinal permeability was measured in vivo, the intestinal mucosal histology, gut microbiota, and short-chain fatty acids (SCFAs) level were analyzed. RESULTS: HHP-DM pups displayed a significantly higher body weight gain than HoP-DM pups during lactation. At PND21, these two types of human milk supplementations did not differentially alter intestinal morphology and permeability, the gene-expression level of several mucosal intestinal markers, gut microbiota, and the caecal SCFAs level. CONCLUSION: Our data suggest that HHP could be an attractive alternative to HoP and that HHP-DM may ensure a better body growth of preterm and/or EUGR infants.

4.
Clin Microbiol Rev ; : e0004523, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940505

RESUMO

SUMMARYThe gut microbiota is a major factor contributing to the regulation of energy homeostasis and has been linked to both excessive body weight and accumulation of fat mass (i.e., overweight, obesity) or body weight loss, weakness, muscle atrophy, and fat depletion (i.e., cachexia). These syndromes are characterized by multiple metabolic dysfunctions including abnormal regulation of food reward and intake, energy storage, and low-grade inflammation. Given the increasing worldwide prevalence of obesity, cachexia, and associated metabolic disorders, novel therapeutic strategies are needed. Among the different mechanisms explaining how the gut microbiota is capable of influencing host metabolism and energy balance, numerous studies have investigated the complex interactions existing between nutrition, gut microbes, and their metabolites. In this review, we discuss how gut microbes and different microbiota-derived metabolites regulate host metabolism. We describe the role of the gut barrier function in the onset of inflammation in this context. We explore the importance of the gut-to-brain axis in the regulation of energy homeostasis and glucose metabolism but also the key role played by the liver. Finally, we present specific key examples of how using targeted approaches such as prebiotics and probiotics might affect specific metabolites, their signaling pathways, and their interactions with the host and reflect on the challenges to move from bench to bedside.

5.
Gut ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740509

RESUMO

OBJECTIVE: To decipher the mechanisms by which the major human milk oligosaccharide (HMO), 2'-fucosyllactose (2'FL), can affect body weight and fat mass gain on high-fat diet (HFD) feeding in mice. We wanted to elucidate whether 2'FL metabolic effects are linked with changes in intestinal mucus production and secretion, mucin glycosylation and degradation, as well as with the modulation of the gut microbiota, faecal proteome and endocannabinoid (eCB) system. RESULTS: 2'FL supplementation reduced HFD-induced obesity and glucose intolerance. These effects were accompanied by several changes in the intestinal mucus layer, including mucus production and composition, and gene expression of secreted and transmembrane mucins, glycosyltransferases and genes involved in mucus secretion. In addition, 2'FL increased bacterial glycosyl hydrolases involved in mucin glycan degradation. These changes were linked to a significant increase and predominance of bacterial genera Akkermansia and Bacteroides, different faecal proteome profile (with an upregulation of proteins involved in carbon, amino acids and fat metabolism and a downregulation of proteins involved in protein digestion and absorption) and, finally, to changes in the eCB system. We also investigated faecal proteomes from lean and obese humans and found similar changes observed comparing lean and obese mice. CONCLUSION: Our results show that the HMO 2'FL influences host metabolism by modulating the mucus layer, gut microbiota and eCB system and propose the mucus layer as a new potential target for the prevention of obesity and related disorders.

6.
Heliyon ; 10(7): e28320, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586362

RESUMO

Background and objective: The leaky gut syndrome is characterized by an intestinal hyperpermeability observed in multiple chronic disorders. Alterations of the gut barrier are associated with translocation of bacterial components increasing inflammation, oxidative stress and eventually dysfunctions of cellular interactions at the origin pathologies. Therapeutic and/or preventive approaches have to focus on the identification of novel targets to improve gut homeostasis. In this context, this study aims to identify the role of PERMEAPROTECT + TOLERANE©, known as PERMEA, a food complement composed of a combination of factors (including l-Glutamine) known to improve gut physiology. Methods: We tested the effects of PERMEA or l-Glutamine alone (as reference) on gut permeability (FITC dextran method, expression of tight junctions) and its inflammatory/oxidative consequences (cytokines and redox assays, RT-qPCR) in a co-culture of human cells (peripheral blood mononuclear cells and intestinal epithelial cells) challenged with TNFα. Results: PERMEA prevented intestinal hyperpermeability induced by inflammation. This was linked with its antioxidant and immunomodulatory properties showing a better efficacity than l-Glutamine alone on several parameters including permeability, global antioxidant charge and production of cytokines. Conclusion: PERMEA is more efficient to restore intestinal physiology, reinforcing the concept that combination of food constituents could be used to prevent the development of numerous diseases.

7.
Mol Psychiatry ; 29(5): 1478-1490, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38361126

RESUMO

The N-acyl phosphatidylethanolamine-specific phospholipase D (NAPE-PLD) catalyzes the production of N-acylethanolamines (NAEs), a family of endogenous bioactive lipids, which are involved in various biological processes ranging from neuronal functions to energy homeostasis and feeding behaviors. Reward-dependent behaviors depend on dopamine (DA) transmission between the ventral tegmental area (VTA) and the nucleus accumbens (NAc), which conveys reward-values and scales reinforced behaviors. However, whether and how NAPE-PLD may contribute to the regulation of feeding and reward-dependent behaviors has not yet been investigated. This biological question is of paramount importance since NAEs are altered in obesity and metabolic disorders. Here, we show that transcriptomic meta-analysis highlights a potential role for NAPE-PLD within the VTA→NAc circuit. Using brain-specific invalidation approaches, we report that the integrity of NAPE-PLD is required for the proper homeostasis of NAEs within the midbrain VTA and it affects food-reward behaviors. Moreover, region-specific knock-down of NAPE-PLD in the VTA enhanced food-reward seeking and reinforced behaviors, which were associated with increased in vivo DA release dynamics in response to both food- and non-food-related rewards together with heightened tropism towards food consumption. Furthermore, midbrain knock-down of NAPE-PLD, which increased energy expenditure and adapted nutrient partitioning, elicited a relative protection against high-fat diet-mediated body fat gain and obesity-associated metabolic features. In conclusion, these findings reveal a new key role of VTA NAPE-PLD in shaping DA-dependent events, feeding behaviors and energy homeostasis, thus providing new insights on the regulation of body metabolism.


Assuntos
Dopamina , Comportamento Alimentar , Homeostase , Núcleo Accumbens , Fosfolipase D , Recompensa , Área Tegmentar Ventral , Área Tegmentar Ventral/metabolismo , Animais , Homeostase/fisiologia , Comportamento Alimentar/fisiologia , Fosfolipase D/metabolismo , Fosfolipase D/genética , Masculino , Camundongos , Núcleo Accumbens/metabolismo , Dopamina/metabolismo , Metabolismo Energético/fisiologia , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/genética , Neurônios Dopaminérgicos/metabolismo , Fosfatidiletanolaminas/metabolismo , Etanolaminas
8.
Sci Rep ; 14(1): 3077, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321177

RESUMO

Overconsumption of added sugars has been pointed out as a major culprit in the increasing rates of obesity worldwide, contributing to the rising popularity of non-caloric sweeteners. In order to satisfy the growing demand, industrial efforts have been made to purify the sweet-tasting molecules found in the natural sweetener stevia, which are characterized by a sweet taste free of unpleasant aftertaste. Although the use of artificial sweeteners has raised many concerns regarding metabolic health, the impact of purified stevia components on the latter remains poorly studied. The objective of this project was to evaluate the impact of two purified sweet-tasting components of stevia, rebaudioside A and D (RebA and RebD), on the development of obesity, insulin resistance, hepatic health, bile acid profile, and gut microbiota in a mouse model of diet-induced obesity. Male C57BL/6 J mice were fed an obesogenic high-fat/high-sucrose (HFHS) diet and orally treated with 50 mg/kg of RebA, RebD or vehicle (water) for 12 weeks. An additional group of chow-fed mice treated with the vehicle was included as a healthy reference. At weeks 10 and 12, insulin and oral glucose tolerance tests were performed. Liver lipids content was analyzed. Whole-genome shotgun sequencing was performed to profile the gut microbiota. Bile acids were measured in the feces, plasma, and liver. Liver lipid content and gene expression were analyzed. As compared to the HFHS-vehicle treatment group, mice administered RebD showed a reduced weight gain, as evidenced by decreased visceral adipose tissue weight. Liver triglycerides and cholesterol from RebD-treated mice were lower and lipid peroxidation was decreased. Interestingly, administration of RebD was associated with a significant enrichment of Faecalibaculum rodentium in the gut microbiota and an increased secondary bile acid metabolism. Moreover, RebD decreased the level of lipopolysaccharide-binding protein (LBP). Neither RebA nor RebD treatments were found to impact glucose homeostasis. The daily consumption of two stevia components has no detrimental effects on metabolic health. In contrast, RebD treatment was found to reduce adiposity, alleviate hepatic steatosis and lipid peroxidation, and decrease LBP, a marker of metabolic endotoxemia in a mouse model of diet-induced obesity.


Assuntos
Adiposidade , Diterpenos do Tipo Caurano , Glicosídeos , Resistência à Insulina , Masculino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Obesidade/metabolismo , Triglicerídeos , Dieta Hiperlipídica , Sacarose/metabolismo , Ácidos e Sais Biliares/metabolismo , Metabolismo dos Lipídeos
9.
Gut Microbes ; 16(1): 2298026, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38170633

RESUMO

Gut - brain communications disorders in irritable bowel syndrome (IBS) are associated with intestinal microbiota composition, increased gut permeability, and psychosocial disturbances. Symptoms of IBS are difficult to medicate, and hence much research is being made into alternative approaches. This study assesses the potential of a treatment with pasteurized Akkermansia muciniphila for alleviating IBS-like symptoms in two mouse models of IBS with different etiologies. Two clinically relevant animal models were used to mimic IBS-like symptoms in C57BL6/J mice: the neonatal maternal separation (NMS) paradigm and the Citrobacter rodentium infection model. In both models, gut permeability, colonic sensitivity, fecal microbiota composition and colonic IL-22 expression were evaluated. The cognitive performance and emotional state of the animals were also assessed by several tests in the C. rodentium infection model. The neuromodulation ability of pasteurized A. muciniphila was assessed on primary neuronal cells from mice dorsal root ganglia using a ratiometric calcium imaging approach. The administration of pasteurized A. muciniphila significantly reduced colonic hypersensitivity in both IBS mouse models, accompanied by a reinforcement of the intestinal barrier function. Beneficial effects of pasteurized A. muciniphila treatment have also been observed on anxiety-like behavior and memory defects in the C. rodentium infection model. Finally, a neuroinhibitory effect exerted by pasteurized A. muciniphila was observed on neuronal cells stimulated with two algogenic substances such as capsaicin and inflammatory soup. Our findings demonstrate novel anti-hyperalgesic and neuroinhibitory properties of pasteurized A. muciniphila, which therefore may have beneficial effects in relieving pain and anxiety in subjects with IBS.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Humanos , Camundongos , Animais , Síndrome do Intestino Irritável/terapia , Privação Materna , Verrucomicrobia/fisiologia
10.
Nat Rev Gastroenterol Hepatol ; 21(3): 164-183, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38066102

RESUMO

Overweight and obesity are characterized by excessive fat mass accumulation produced when energy intake exceeds energy expenditure. One plausible way to control energy expenditure is to modulate thermogenic pathways in white adipose tissue (WAT) and/or brown adipose tissue (BAT). Among the different environmental factors capable of influencing host metabolism and energy balance, the gut microbiota is now considered a key player. Following pioneering studies showing that mice lacking gut microbes (that is, germ-free mice) or depleted of their gut microbiota (that is, using antibiotics) developed less adipose tissue, numerous studies have investigated the complex interactions existing between gut bacteria, some of their membrane components (that is, lipopolysaccharides), and their metabolites (that is, short-chain fatty acids, endocannabinoids, bile acids, aryl hydrocarbon receptor ligands and tryptophan derivatives) as well as their contribution to the browning and/or beiging of WAT and changes in BAT activity. In this Review, we discuss the general physiology of both WAT and BAT. Subsequently, we introduce how gut bacteria and different microbiota-derived metabolites, their receptors and signalling pathways can regulate the development of adipose tissue and its metabolic capacities. Finally, we describe the key challenges in moving from bench to bedside by presenting specific key examples.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Animais , Camundongos , Sobrepeso , Obesidade , Tecido Adiposo
11.
Diabetologia ; 67(2): 333-345, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37897566

RESUMO

AIMS/HYPOTHESIS: We aimed to investigate the association between the abundance of Dysosmobacter welbionis, a commensal gut bacterium, and metabolic health in human participants with obesity and diabetes, and the influence of metformin treatment and prebiotic intervention. METHODS: Metabolic variables were assessed and faecal samples were collected from 106 participants in a randomised controlled intervention with a prebiotic stratified by metformin treatment (Food4Gut trial). The abundance of D. welbionis was measured by quantitative PCR and correlated with metabolic markers. The in vitro effect of metformin on D. welbionis growth was evaluated and an in vivo study was performed in mice to investigate the effects of metformin and D. welbionis J115T supplementation, either alone or in combination, on metabolic variables. RESULTS: D. welbionis abundance was unaffected by prebiotic treatment but was significantly higher in metformin-treated participants. Responders to prebiotic treatment had higher baseline D. welbionis levels than non-responders. D. welbionis was negatively correlated with aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels and fasting blood glucose levels in humans with obesity and type 2 diabetes. In vitro, metformin had no direct effect on D. welbionis growth. In mice, D. welbionis J115T treatment reduced body weight gain and liver weight, and improved glucose tolerance to a better level than metformin, but did not have synergistic effects with metformin. CONCLUSIONS/INTERPRETATION: D. welbionis abundance is influenced by metformin treatment and associated with prebiotic response, liver health and glucose metabolism in humans with obesity and diabetes. This study suggests that D. welbionis may play a role in metabolic health and warrants further investigation. CLINICAL TRIAL: NCT03852069.


Assuntos
Clostridiales , Diabetes Mellitus Tipo 2 , Metformina , Humanos , Animais , Camundongos , Metformina/uso terapêutico , Metformina/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Obesidade/tratamento farmacológico , Dieta Hiperlipídica
12.
Int J Food Sci Nutr ; 75(1): 58-69, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37921224

RESUMO

Gut microbiota is implicated in the control of host physiology by releasing bioactive actors that could exert a direct or indirect effect on tissue. A dysfunction of the gut microbiota to tissue axis could participate in the development of pathological states such as obesity and diabetes. The aim of this study was to identify the metabolic effect of Limosilactobacillus reuteri (known as Lactobacillus reuteri) BIO7251 (L. reuteri BIO7251) isolated from Corsican clementine orange. Body weight gain, adiposity, glucose tolerance, glucose absorption and food intake were measured in mice fed a high-fat diet in response to a preventive oral administration of L. reuteri BIO7251. This strain of bacteria exerts a beneficial effect on body weight gain by decreasing the subcutaneous adipose tissue mass. The treatment with L. reuteri BIO7251 decreases glucose absorption and food intake in obese/diabetic mice. L. reuteri BIO7251 could be tested as new probiotic strain that could manage body weight during obesity.


Assuntos
Diabetes Mellitus Experimental , Resistência à Insulina , Limosilactobacillus reuteri , Probióticos , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos Obesos , Obesidade/metabolismo , Peso Corporal , Aumento de Peso , Glucose/metabolismo , Fenótipo , Tecido Adiposo/metabolismo , Sistema Nervoso/metabolismo
13.
Res Sq ; 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37790425

RESUMO

The N-acyl phosphatidylethanolamine-specific phospholipase D (NAPE-PLD) catalyzes the production of N-acylethanolamines (NAEs), a family of endogenous bioactive lipids, which are involved in various biological processes ranging from neuronal functions to energy homeostasis and feeding behaviors. Reward-dependent behaviors depend on dopamine (DA) transmission between the ventral tegmental area (VTA) and the nucleus accumbens (NAc), which conveys reward-values and scales reinforced behaviors. However, whether and how NAPE-PLD may contribute to the regulation of feeding and reward-dependent behaviors has not yet been investigated. This biological question is of paramount importance since NAEs are altered in obesity and metabolic disorders. Here, we show that transcriptomic meta-analysis highlights a potential role for NAPE-PLD within the VTA®NAc circuit. Using brain-specific invalidation approaches, we report that the integrity of NAPE-PLD is required for the proper homeostasis of NAEs within the midbrain VTA and it affects food-reward behaviors. Moreover, region-specific knock-down of NAPE-PLD in the VTA enhanced food-reward seeking and reinforced behaviors, which were associated with increased in vivo DA release dynamics in response to both food and non-food-related rewards together with heightened tropism towards food consumption. Furthermore, midbrain knock-down of NAPE-PLD, which increased energy expenditure and adapted nutrient partitioning, elicited a relative protection against high-fat diet-mediated body fat gain and obesity-associated metabolic features. In conclusion, these findings reveal a new key role of VTA NAPE-PLD in shaping DA-dependent events, feeding behaviors and energy homeostasis, thus providing new insights on the regulation of body metabolism.

15.
BMJ Open ; 13(9): e070027, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37709337

RESUMO

INTRODUCTION: Excess body weight is associated with a state of low-grade chronic inflammation and alterations of the gut microbiome. Powdered meal replacements (PMR) have been shown to be an effective strategy for weight management; however, their effect on inflammation and the gut microbiome remains unclear. The aim of this 12-week randomised control clinical trial is to investigate the effects of PMR consumption, here given as a soy-yoghurt-honey formula, on inflammation, gut microbiome and overall metabolism in individuals with excessive body weight. METHODS AND ANALYSIS: Healthy adults with excess body weight (n=88) are being recruited and randomly assigned to one of the following groups: (1) Control group (CON): maintaining usual diet for 12 weeks, or (2) PMR group: replacing morning and afternoon snacks daily with a PMR for 12 weeks. Participants are asked to maintain body weight throughout the study and fill out a journal with information about PMR consumption, body weight, food intake, appetite sensations and medications. Three study visits are required: baseline, week 6 and week 12. Outcome measures include systemic inflammatory biomarkers, gut microbiome composition, metabolic blood markers, host energy metabolism, body composition, appetite sensations and host gene expression profile. ETHICS AND DISSEMINATION: This research protocol was approved by the University of Alberta Ethics Board (Pro00070712) and adheres to the Canadian Tri-Council Policy statement on the use of human participants in research. Procedures and potential risks are fully discussed with participants. Study findings will be disseminated in peer-reviewed journals, conference presentations and social media. TRIAL REGISTRATION NUMBER: NCT03235804.


Assuntos
Microbioma Gastrointestinal , Adulto , Humanos , Canadá , Peso Corporal , Aumento de Peso , Inflamação , Ensaios Clínicos Controlados Aleatórios como Assunto
16.
Nutrients ; 15(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37764826

RESUMO

BACKGROUND: Human milk banks (HMBs) provide sterilized donor milk (DM) for the feeding of preterm infants. Most HMBs use the standard method of Holder pasteurization (HoP) performed by heating DM at 62.5 °C for 30 min. High hydrostatic pressure (HHP) processing has been proposed as an alternative to HoP. This study aims to evaluate intestinal barrier integrity and microbiota composition in adult mice subjected to a chronic oral administration of HoP- or HHP-DM. METHODS: Mice were treated by daily gavages with HoP- or HHP-DM over seven days. Intestinal barrier integrity was assessed through in vivo 4 kDa FITC-dextran permeability assay and mRNA expression of several tight junctions and mucins in ileum and colon. Cecal short chain fatty acids (SCFAs) and microbiota were analyzed. RESULTS: HHP-DM mice displayed decreased intestinal permeability to FITC-dextran and increased ileal mRNA expression levels of two tight junctions (Ocln and Cdh1) and Muc2. In the colon, mRNA expression levels of two tight junctions (Cdh1 and Tjp1) and of two mucins (Muc2 and Muc4) were decreased in HHP-DM mice. Cecal SCFAs and microbiota were not different between groups. CONCLUSIONS: HHP processing of DM reinforces intestinal barrier integrity in vivo without affecting gut microbiota and SCFAs production. This study reinforces previous findings showing that DM sterilization through HHP might be beneficial for the intestinal maturation of preterm infants compared with the use of HoP for the treatment of DM.


Assuntos
Pasteurização , Recém-Nascido , Adulto , Lactente , Humanos , Animais , Camundongos , Leite Humano , Pressão Hidrostática , Recém-Nascido Prematuro , Esterilização , RNA Mensageiro
17.
JPGN Rep ; 4(3): e334, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37600615

RESUMO

Objectives: Autoimmune hepatitis and primary sclerosing cholangitis (PSC) can both be present, resulting in autoimmune sclerosing cholangitis (ASC). PSC physiopathology could be based on the cross-talk between gut microbiota and bile acids (BAs); antibiotics are an innovative therapy. This pilot study assesses metronidazole (MTZ)'s effectiveness in ASC or PSC patients according to the stage of the disease, and its effects on biochemical parameters, BA profiles, and gut microbiota. Methods: ASC or PSC patients from Cliniques universitaires Saint-Luc's pediatric hepato-gastroenterology division were enrolled retrospectively and prospectively; both datasets were merged. MTZ was administered over at least 14 days on top of standard treatment (ursodeoxycholic acid, azathioprine, and steroids). Fecal and blood samples were collected before (T0) and at MTZ day 14 (T14). Sustained biochemical remission was defined by the reduction of transaminases (AST and ALT), gamma-glutamyl transferase (GGT), and CRP until 12 months post-MTZ. Results: A total of 18 patients (mean age, 13.2 ± 4.5 years) were enrolled (13 ASC and 5 PSC), and divided in remission or relapse patients. CRP, AST, ALT, and GGT levels decreased post-MTZ in both groups (excepting GGT in relapse patients), with decreases between T0 and T14 being significant for AST and ALT. Relapse patients were older (P = 0.0351) and in late-disease stage, with mainly large-duct PSC (P = 0.0466). In remission patients, the mean plasma relative abundance of hydrophilic BA increased by +6.3% (P = 0.0391) after MTZ. Neither at baseline nor T14, there were significant differences in gut microbiota recorded. Conclusion: These data are likely indicative of long-term benefits following MTZ therapy at early-stage ASC or PSC, with increased hydrophilic BA abundance. Multicenter prospective studies are needed.

18.
J Lipid Res ; 64(10): 100437, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37648213

RESUMO

The newly identified bacterium Dysosmobacter welbionis J115T improves host metabolism in high-fat diet (HFD)-fed mice. To investigate mechanisms, we used targeted lipidomics to identify and quantify bioactive lipids produced by the bacterium in the culture medium, the colon, the brown adipose tissue (BAT), and the blood of mice. In vitro, we compared the bioactive lipids produced by D. welbionis J115T versus the probiotic strain Escherichia coli Nissle 1917. D. welbionis J115T administration reduced body weight, fat mass gain, and improved glucose tolerance and insulin resistance in HFD-fed mice. In vitro, 19 bioactive lipids were highly produced by D. welbionis J115T as compared to Escherichia coli Nissle 1917. In the plasma, 13 lipids were significantly changed by the bacteria. C18-3OH was highly present at the level of the bacteria, but decreased by HFD treatment in the plasma and normalized in D. welbionis J115T-treated mice. The metabolic effects were associated with a lower whitening of the BAT. In the BAT, HFD decreased the 15-deoxy-Δ12,14-prostaglandin J2, a peroxisome proliferator-activated receptor (PPAR-γ) agonist increased by 700% in treated mice as compared to HFD-fed mice. Several genes controlled by PPAR-γ were upregulated in the BAT. In the colon, HFD-fed mice had a 60% decrease of resolvin D5, whereas D. welbionis J115T-treated mice exhibited a 660% increase as compared to HFD-fed mice. In a preliminary experiment, we found that D. welbionis J115T improves colitis. In conclusion, D. welbionis J115T influences host metabolism together with several bioactive lipids known as PPAR-γ agonists.

19.
Heliyon ; 9(7): e18196, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37501991

RESUMO

Background and objective: Pasteurized Akkermansia muciniphila cells have shown anti-diabetic effects in rodents and human. Although, its primary site of action consists in maintaining the gut barrier function, there are no study exploring if A. muciniphila controls glycemia via a gut to brain axis. Targeting the gut motility represents an alternative pathway to treat hyperglycemia. Here, we tested the impact of pasteurized A. muciniphila on gut motility, gut-brain axis and glucose metabolism. Methods: We used mice fed a 45% high-fat (HFD) treated or not with pasteurized A. muciniphila MucT during 12 weeks. We measured the effects of the treatment on body weight gain, glucose metabolism (insulin, glycemia, glucose tolerance), gut contraction and enteric neurotransmitter release, and hypothalamic nitric oxide (NO) release. Results: We show that pasteurized A. muciniphila exerts positive effects on different metabolic parameters such as body weight, fat mass, insulin, glycemia and glucose tolerance. This could be explained by the ability of pasteurized A. muciniphila supplementation to decrease duodenal contraction and to increase hypothalamic NO release in HFD mice. Conclusion: We demonstrate a novel mode of action of pasteurized A. muciniphila explaining its beneficial impact on the control of glycemia in a preclinical model of type 2 diabetes via gut-brain axis signaling.

20.
Artigo em Inglês | MEDLINE | ID: mdl-37224999

RESUMO

Ceramides (Cer) have been shown as lipotoxic inducers, which disturb numerous cell-signaling pathways, leading to metabolic disorders such as type 2 diabetes. In this study, we aimed to determine the role of de novo hepatic ceramide synthesis in energy and liver homeostasis in mice. We generated mice lacking serine palmitoyltransferase 2 (Sptlc2), the rate limiting enzyme of ceramide de novo synthesis, in liver under albumin promoter. Liver function, glucose homeostasis, bile acid (BA) metabolism and hepatic sphingolipids content were assessed using metabolic tests and LC-MS. Despite lower expression of hepatic Sptlc2, we observed an increased concentration of hepatic Cer, associated with a 10-fold increase in neutral sphingomyelinase 2 (nSMase2) expression, and a decreased sphingomyelin content in the liver. Sptlc2ΔLiv mice were protected against obesity induced by high fat diet and displayed a defect in lipid absorption. In addition, an important increase in tauro-muricholic acid was associated with a downregulation of the nuclear BA receptor FXR target genes. Sptlc2 deficiency also enhanced glucose tolerance and attenuated hepatic glucose production, while the latter effect was dampened in presence of nSMase2 inhibitor. Finally, Sptlc2 disruption promoted apoptosis, inflammation and progressive development of hepatic fibrosis, worsening with age. Our data suggest a compensatory mechanism to regulate hepatic ceramides content from sphingomyelin hydrolysis, with deleterious impact on liver homeostasis. In addition, our results show the involvement of hepatic sphingolipid modulation in BA metabolism and hepatic glucose production in an insulin-independent manner, which highlight the still under-researched role of ceramides in many metabolic functions.


Assuntos
Ceramidas , Diabetes Mellitus Tipo 2 , Animais , Camundongos , Ácidos e Sais Biliares/metabolismo , Ceramidas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Homeostase , Fígado/metabolismo , Serina/metabolismo , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/metabolismo , Esfingomielinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...