Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Reprod Toxicol ; 126: 108602, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723698

RESUMO

Reproduction is a functional outcome that relies on complex cellular, tissue, and organ interactions that span the developmental period to adulthood. Thus, the assessment of its disruption by environmental chemicals would benefit significantly from scalable and innovative approaches to testing using functionally comparable reproductive models such as the nematode C. elegans. We adapted a previously described low-throughput in vivo chromosome segregation assay using C. elegans predictive of reproductive toxicity and leveraged available public data sources (ToxCast, ICE) to screen and characterize 133 physiologically-relevant chemicals in a high-throughput manner. The screening outcome was further validated in a second, independent in vivo assay assessing embryonic viability. In total, 13 chemicals were classified as reproductive toxicants with the two most active chemicals belonging to the large family of Quaternary Ammonium Compounds (QACs) commonly used as disinfectants but with limited available reproductive toxicity data. We compared the results from the C. elegans assay with ToxCast in vitro data compiled from 700+ cell response assays and 300+ signaling pathways-based assays. We did not observe a difference in the bioactivity or in the average potency (AC50) between the top and bottom chemicals. However, the intended target categories were significantly different between the classified chemicals with, in particular, an over-representation of steroid hormone targets for the high Z-score chemicals. Taken together, these results point to the value of in vivo models that scale to high-throughput level for reproductive toxicity assessment and to the need to prioritize the assessment of QACs impacts on reproduction.


Assuntos
Caenorhabditis elegans , Poluentes Ambientais , Reprodução , Caenorhabditis elegans/efeitos dos fármacos , Animais , Reprodução/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Testes de Toxicidade/métodos , Ensaios de Triagem em Larga Escala
2.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585844

RESUMO

Reproduction is a functional outcome that relies on complex cellular, tissue, and organ interactions that span the developmental period to adulthood. Thus, the assessment of its disruption by environmental chemicals is remarkably painstaking in conventional toxicological animal models and does not scale up to the number of chemicals present in our environment and requiring testing. We adapted a previously described low-throughput in vivo chromosome segregation assay using C. elegans predictive of reproductive toxicity and leveraged available public data sources (ToxCast, ICE) to screen and characterize 133 physiologically-relevant chemicals in a high-throughput manner. The screening outcome was further validated in a second, independent in vivo assay assessing embryonic viability. In total, 13 chemicals were classified as reproductive toxicants with the two most active chemicals belonging to the large family of Quaternary Ammonium Compounds (QACs) commonly used as disinfectants but with limited available reproductive toxicity data. We compared the results from the C. elegans assay with ToxCast in vitro data compiled from 700+ cell response assays and 300+ signaling pathways-based assays. We did not observe a difference in the bioactivity or in average potency (AC50) between the top and bottom chemicals. However, the intended target categories were significantly different between the classified chemicals with, in particular, an over-representation of steroid hormone targets for the high Z-score chemicals. Taken together, these results point to the value of in vivo models that scale to high-throughput level for reproductive toxicity assessment and to the need to prioritize the assessment of QACs impacts on reproduction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...