Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(39): 24514-24523, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36193719

RESUMO

The heat-induced crystallization of amorphous calcium phosphate (ACP) is an intriguing process not yet well comprehended. This is because most of the works on this topic are based on ex situ studies where the materials are characterized after the heat and cooldown cycles, thus missing transient structural changes. Here, we used time-resolved energy dispersive X-ray diffraction and infrared spectroscopy to study, for the first time, the thermal crystallization of ACP in situ. The thermal crystallization of two kinds of citrate-stabilized carbonated ACP was studied, as they are promising materials for the preparation of advanced bioceramics. The behavior of these samples was compared to that of two citrate-free ACPs, either doped or non-doped with carbonate ions. Our results evinced that several phenomena occur during ACP thermal annealing. Before crystallization, all ACP samples undergo a decrease in the short-range order process, followed by several internal reorganizations. We have assessed that differently from carbonate-free ACP, carbonated ACPs with and without citrate directly crystallize into a biomimetic poorly crystalline carbonated hydroxyapatite. Citrate-stabilized ACPs in comparison to citrate-free ACPs have a faster hydroxyapatite formation kinetics, which is due to their higher specific surface area. This work reveals the necessity and the potentialities of using in situ techniques to effectively probe complex processes such as the heat-induced crystallization of ACPs.


Assuntos
Fosfatos de Cálcio , Durapatita , Fosfatos de Cálcio/química , Cristalização , Durapatita/química , Íons
2.
ACS Appl Mater Interfaces ; 14(39): 44405-44418, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36150165

RESUMO

The development of superconcentrated or water-in-salt electrolytes (WISEs) has paved a new way toward realizing environmentally friendly, nonflammable batteries and supercapacitors based on aqueous electrolytes. The development of new electrolytes, such as WISEs, needs to be accompanied by further studies of the charging mechanism. This is essential to guide the choice of the electrode/electrolyte pairs for optimizing the performance of WISE-based supercapacitors. Therefore, to optimize the performance of carbon/carbon supercapacitors when using new, superconcentrated electrolytes, we present a detailed investigation of the carbon/electrolyte interface by combining electrochemical measurements with Raman and NMR spectroscopy and mass spectrometry. In particular, NMR provides crucial information about the local environment of electrolyte ions inside the carbon pores of the electrode. The results show that the structure of the electrolyte strongly depends on the concentration of the electrolyte and affects the mechanism of charge storage at the positive and negative electrodes.

3.
Appl Spectrosc ; 76(6): 723-729, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35128962

RESUMO

Organic molecules are prime targets in the search for life on other planetary bodies in the Solar System. Understanding their preservation potential and detectability after ionic irradiation, with fluences potentially representing those received for several millions to billions of years at Mars or in interplanetary space, is a crucial goal for astrobiology research. In order to be able to perform in situ characterization of such organic molecules under ionic irradiation in the near future, a feasibility experiment was performed with polymer test samples to validate the optical configuration and the irradiation chamber geometry. We present here a Raman in situ investigation of the evolution of a series of polymers during proton irradiation. To achieve this goal, a new type of Raman optical probe was designed, which documented that proton irradiation (with a final fluence of 3.1014 at·cm-2) leads to an increase in the background level of the signal, potentially explained by the scission of the polymeric chains and by atom displacements creating defects in the materials. To improve the setup further, a micro-Raman probe and a temperature-controlled sample holder are under development to provide higher spectral and spatial resolutions (by reducing the depth of field and laser spot size), to permit Raman mapping as well as to avoid any thermal effects.


Assuntos
Prótons , Análise Espectral Raman , Exobiologia/métodos , Lasers , Análise Espectral Raman/métodos , Temperatura
4.
Phys Chem Chem Phys ; 23(33): 17973-17983, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34382044

RESUMO

Based on a combination of molecular dynamics simulations, and Raman and Brillouin light scattering spectroscopies, we investigate the structure and elastic properties relationship in an archetypical calcium silicate glass system. From molecular dynamics and Raman spectroscopy, we show that the atomic structure at the short and intermediate length scales is made up of long polymerized silicate chains, which adjusts itself by closing the Si-O-Si angles and leaving more space to [CaO]n edge shared polyhedra to strengthen the glass. Using Brillouin spectroscopy, we observe an increase of elastic constants of the glass with the calcium content, as the cohesion of the glass structure is enhanced through an increase of the binding between the cross-linked calcium-silicate frameworks. This result, albeit being simple in its nature, illustrates for the first time the implication of the calcium framework in the elastic behavior of the glass and will contribute substantially to the understanding of the composition-structure-property relationships in multi-component industrial glasses.

5.
Materials (Basel) ; 13(1)2020 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-31947941

RESUMO

This work investigates the impact of carbon black (CB) as a porogenic agent and conductive additive in the preparation of electrically conductive nanoporous carbon gels. For this, a series of materials were prepared by the polycondensation of resorcinol/formaldehyde mixtures in the presence of increasing amounts of carbon black. The conductivity of the carbon gel/CB composites increased considerably with the amount of CB, indicating a good dispersion of the additive within the carbon matrix. A percolation threshold of ca. 8 wt.% of conductive additive was found to achieve an adequate "point to point" conductive network. This value is higher than that reported for other additives, owing to the synthetic route chosen, as the additive was incorporated in the reactant's mixture (pre-synthesis) rather than in the formulation of the electrodes ink (post-synthesis). The CB strongly influenced the development of the porous architecture of the gels that exhibited a multimodal mesopore structure comprised of two distinct pore networks. The microporosity and the primary mesopore structure remained rather unchanged. On the contrary, a secondary network of mesopores was formed in the presence of the additive. Furthermore, the average mesopore size and the volume of the secondary network increased with the amount of CB.

6.
Phys Chem Chem Phys ; 21(35): 19554-19566, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31464321

RESUMO

Microthermometric measurements of a synthetic high-density (984 kg m-3) water inclusion in quartz revealed that only part of the super-cooled liquid water (L) transforms to solid ice Ih upon ice nucleation (L → ice Ih + L). While ice nucleation occurs in the ice Ih stability field at -41 °C and 28 MPa the pressure increases instantaneously to 315 MPa into the ice II stability field. At this point, both phases, liquid water and ice Ih are metastable. The coexistence of these two phases was confirmed by Raman spectroscopy and could be traced down to -80 °C. The pressure along this low-temperature metastable extension of the ice Ih melting curve was determined by means of the frequency shift of the ice Ih peak position using both the O-H stretching band around 3100 cm-1 and the lattice translational band around 220 cm-1. At -80 °C and 466 MPa the super-cooled ice Ih melting curve encounters the homogeneous nucleation limit (TH) and the remaining liquid water transformed either to metastable ice IV (ice Ih + L → ice Ih + ice IV) or occasionally to metastable ice III (ice Ih + L → ice Ih + ice III). The nucleation of ice IV resulted in a pressure drop of about 180 MPa. Upon subsequent heating the pressure develops along a slightly negatively sloped ice Ih-ice IV equilibrium line terminating in a triple point at -32.7 °C and 273 MPa, where ice IV melts to liquid water (ice Ih + ice IV → ice Ih + L). Hitherto existing experimental data of the ice IV melting curve (ice IV → L) were found to be in line with the observed ice Ih-ice IV-liquid triple point. If, on the other hand, ice III nucleated at -80 °C (instead of ice IV) the associated pressure drop was about 260 MPa. The ice Ih-ice III-liquid triple point was determined at -22.0 °C and 207 MPa (ice Ih + ice III → ice Ih + L), which is in agreement with previous experimental data.

7.
J Phys Chem B ; 117(18): 5757-64, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23574051

RESUMO

Here we report high-precision measurements of structural relaxation dynamics in the glass transition range at the intermediate and short length scale for a strong sodium silicate glass during long annealing times. We evidence for the first time the heterogeneous dynamics at the intermediate range order by probing the acoustic longitudinal frequency in the GHz region by Brillouin light scattering spectroscopy. Or, from in-situ Raman measurements, we show that relaxation is indeed homogeneous at the interatomic length scale. Our results show that the dynamics at the intermediate range order contains two distinct relaxation time scales, a fast and a slow component, differing by about a 10-fold factor below Tg and approaching to one another past the glass transition. The slow relaxation time agrees with the shear relaxation time, proving that Si-O bond breaking constitutes the primary control of structural relaxation at the intermediate range order.


Assuntos
Silicatos/química , Termodinâmica , Vidro/química , Estrutura Molecular , Silicatos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...