Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prep Biochem Biotechnol ; : 1-8, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346212

RESUMO

The purpose of this research was to evaluate the suitability of whey as an effective medium for the coproduction of inulinase and invertase by an oleaginous yeast Galactomyces geotrichum and to investigate the effects of some additional carbon and nitrogen sources. The nutritional factors and composition of the medium have a great impact on the production pathways of microbial enzymes. To deepen the research, a Taguchi design was employed to quickly scan the best conditions. First, the cheese whey was partly deproteinized and investigated as the sole medium for the yeast. The next step was performed to study the effects of inulin, sucrose and lactose as carbon sources and ammonium sulfate, yeast extract and casein as nitrogen sources. All analyses (Taguchi and ANOVA) were performed using Minitab software. Whey-based medium without any additional carbon and nitrogen sources gave inulinase and invertase activities as 54.6 U/mL and 47.4 U/mL, respectively. Maximum inulinase activity was obtained as 77.9 U/mL using inulin as the carbon source without any nitrogen source. The highest I/S ratio was found as 2.08. On the other hand, the highest invertase activity was carried out as 50.85 U/mL in whey-based medium using lactose as carbon source without any additional nitrogen source. This is the first report about partly deproteinized whey-based medium utilization for simultaneous inulinase and invertase production by G. geotrichum TS-61. Moreover, the effects of carbon and nitrogen sources were investigated in detail.


Whey is a sufficient medium for inulinase and invertase productionInulin is an excellent carbon source for enhanced inulinase activityTaguchi orthogonal array presents an effective and quick screening method for the fermentation process.

2.
Prep Biochem Biotechnol ; 53(1): 101-107, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36264232

RESUMO

Jerusalem artichoke (JA) is a nutritional vegetable for human diet depending on its natural structure, especially high inulin content and it is the second inulin source for commercial production in the world, after chicory. It was aimed to investigate the inulinase production capability of Galactomyces geotrichum TS61 (GenBank accession: MN749818) using JA as an economical and effective substrate comparing with the pure chicory inulin and to optimize the fermentation using Taguchi design of experiment (DOE) in this study. Besides, the effects of sucrose on inulinase production either combined with JA or in its absence were also studied. Taguchi L16 orthogonal array was employed for optimization. Both of inulinase activities obtained from JA and pure inulin gave the maximum result at the 10th experimental run as 40.21 U/mL and 57.35 U/mL, respectively. The optimum levels were detected for each factor as, 30 g/L JA, 30 g/L sucrose, pH 5.5, and four days for time. The predicted value was found as 41.63 U/mL that was similar to the obtained result as 41.17 U/mL. Finally, inulinase activity was increased approximately 8-folds after optimization. The sucrose-free medium had similar effects with higher concentrations of JA at long incubation time. This is the first investigation about inulinase production by G. geotrichum.


Low-cost inulinase production was achieved using an economical substrateSucrose effects were investigated in detail on inulinase productionUse of Taguchi DOE supported effective enzyme production.


Assuntos
Cichorium intybus , Helianthus , Humanos , Inulina , Glicosídeo Hidrolases , Sacarose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...