Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 109(19): 193901, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23215384

RESUMO

We demonstrate both theoretically and experimentally nonparaxial Mathieu and Weber accelerating beams, generalizing the concept of previously found accelerating beams. We show that such beams bend into large angles along circular, elliptical, or parabolic trajectories but still retain nondiffracting and self-healing capabilities. The circular nonparaxial accelerating beams can be considered as a special case of the Mathieu accelerating beams, while an Airy beam is only a special case of the Weber beams at the paraxial limit. Not only do generalized nonparaxial accelerating beams open up many possibilities of beam engineering for applications, but the fundamental concept developed here can be applied to other linear wave systems in nature, ranging from electromagnetic and elastic waves to matter waves.

2.
Biomed Opt Express ; 3(8): 1891-7, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22876352

RESUMO

We propose and demonstrate trapping and rotation of microparticles and biological samples with a moiré-based rotating optical tweezers. We show that polystyrene beads, as well as Escherichia coli cells, can be rotated with ease, while the speed and direction of rotation are fully controllable by a computer, obviating mechanical movement or phase-sensitive interference. Furthermore, we demonstrate experimentally the generation of white-light propelling beams and arrays, and discuss the possibility of optical tweezing and particle micro-manipulation based on incoherent white-light rotating patterns.

3.
Opt Lett ; 37(14): 2820-2, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22825145

RESUMO

We study linear and nonlinear self-accelerating beams propagating along circular trajectories beyond the paraxial approximation. Such nonparaxial accelerating beams are exact solutions of the Helmholtz equation, preserving their shapes during propagation even under nonlinearity. We generate experimentally and observe directly these large-angle bending beams in colloidal suspensions of polystyrene nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...