Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 292(13): 5227-5238, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28184006

RESUMO

Reactive oxygen species generate potentially cytotoxic and mutagenic lesions in DNA, both between and within the nucleosomes that package DNA in chromatin. The vast majority of these lesions are subject to base excision repair (BER). Enzymes that catalyze the first three steps in BER can act at many sites in nucleosomes without the aid of chromatin-remodeling agents and without irreversibly disrupting the host nucleosome. Here we show that the same is true for a protein complex comprising DNA ligase IIIα and the scaffolding protein X-ray repair cross-complementing protein 1 (XRCC1), which completes the fourth and final step in (short-patch) BER. Using in vitro assembled nucleosomes containing discretely positioned DNA nicks, our evidence indicates that the ligase IIIα-XRCC1 complex binds to DNA nicks in nucleosomes only when they are exposed by periodic, spontaneous partial unwrapping of DNA from the histone octamer; that the scaffolding protein XRCC1 enhances the ligation; that the ligation occurs within a complex that ligase IIIα-XRCC1 forms with the host nucleosome; and that the ligase IIIα-XRCC1-nucleosome complex decays when ligation is complete, allowing the host nucleosome to return to its native configuration. Taken together, our results illustrate ways in which dynamic properties intrinsic to nucleosomes may contribute to the discovery and efficient repair of base damage in chromatin.


Assuntos
DNA Ligases/metabolismo , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Nucleossomos/genética , Sítios de Ligação , Cromatina , DNA Ligase Dependente de ATP , DNA Ligases/fisiologia , Proteínas de Ligação a DNA/fisiologia , Histonas/metabolismo , Humanos , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
2.
J Cell Physiol ; 231(1): 3-14, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26040249

RESUMO

All organisms suffer double-strand breaks (DSBs) in their DNA as a result of exposure to ionizing radiation. DSBs can also form when replication forks encounter DNA lesions or repair intermediates. The processing and repair of DSBs can lead to mutations, loss of heterozygosity, and chromosome rearrangements that result in cell death or cancer. The most common pathway used to repair DSBs in metazoans (non-homologous DNA end joining) is more commonly mutagenic than the alternative pathway (homologous recombination mediated repair). Thus, factors that influence the choice of pathways used DSB repair can affect an individual's mutation burden and risk of cancer. This review describes radiological, chemical, and biological mechanisms that generate DSBs, and discusses the impact of such variables as DSB etiology, cell type, cell cycle, and chromatin structure on the yield, distribution, and processing of DSBs. The final section focuses on nucleosome-specific mechanisms that influence DSB production, and the possible relationship between higher order chromosome coiling and chromosome shattering (chromothripsis).


Assuntos
Ciclo Celular/genética , Cromatina/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , Reparo do DNA/fisiologia , Radiação Ionizante , Animais , Humanos
3.
J Biol Chem ; 289(29): 19881-93, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24891506

RESUMO

Exposure to ionizing radiation can produce multiple, clustered oxidative lesions in DNA. The near simultaneous excision of nearby lesions in opposing DNA strands by the base excision repair (BER) enzymes can produce double-strand DNA breaks (DSBs). This attempted BER accounts for many of the potentially lethal or mutagenic DSBs that occur in vivo. To assess the impact of nucleosomes on the frequency and pattern of BER-dependent DSB formation, we incubated nucleosomes containing oxidative damages in opposing DNA strands with selected DNA glycosylases and human apurinic/apyrimidinic endonuclease 1. Overall, nucleosomes substantially suppressed DSB formation. However, the degree of suppression varied as a function of (i) the lesion type and DNA glycosylase tested, (ii) local sequence context and the stagger between opposing strand lesions, (iii) the helical orientation of oxidative lesions relative to the underlying histone octamer, and (iv) the distance between the lesion cluster and the nucleosome edge. In some instances the binding of a BER factor to one nucleosomal lesion appeared to facilitate binding to the opposing strand lesion. DSB formation did not invariably lead to nucleosome dissolution, and in some cases, free DNA ends resulting from DSB formation remained associated with the histone octamer. These observations explain how specific structural and dynamic properties of nucleosomes contribute to the suppression of BER-generated DSBs. These studies also suggest that most BER-generated DSBs will occur in linker DNA and in genomic regions associated with elevated rates of nucleosome turnover or remodeling.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Nucleossomos/metabolismo , Cromatina/química , Cromatina/metabolismo , Cromatina/efeitos da radiação , DNA/química , DNA/metabolismo , DNA/efeitos da radiação , Dano ao DNA , DNA Glicosilases/metabolismo , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Oxirredução
4.
Protein Expr Purif ; 84(1): 130-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22569481

RESUMO

Endonuclease VIII-like 3 (Neil3) is one of the five DNA glycosylases found in mammals that recognize and remove oxidized bases, and initiate the base excision repair (BER) pathway. Previous attempts to express and purify the mouse and human orthologs of Neil3 in their active form have not been successful. Here we report the construction of bicistronic expression vectors for expressing in Escherichia coli the full-length mouse Neil3 (MmuNeil3), its glycosylase domain (MmuNeil3Δ324), as well as the glycosylase domain of human Neil3 (NEIL3Δ324). The purified Neil3 proteins are all active, and NEIL3Δ324 exhibits similar glycosylase/lyase activity as MmuNeil3Δ324 on both single-stranded and double-stranded substrates containing thymine glycol (Tg), spiroiminodihydantoin (Sp) or an abasic site (AP). We show that N-terminal initiator methionine processing is critical for the activity of both mouse and human Neil3 proteins. Co-expressing an E. coli methionine aminopeptidase (EcoMap) Y168A variant with MmuNeil3, MmuNeil3Δ324 and NEIL3Δ324 improves the N-terminal methionine processing and increases the percentage of active Neil3 proteins in the preparation. The purified Neil3 proteins are suitable for biochemical, structural and functional studies.


Assuntos
Endodesoxirribonucleases/biossíntese , Endodesoxirribonucleases/isolamento & purificação , N-Glicosil Hidrolases/biossíntese , N-Glicosil Hidrolases/isolamento & purificação , Proteínas Recombinantes de Fusão/isolamento & purificação , Animais , Clonagem Molecular , Códon , Eletroforese em Gel de Poliacrilamida , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Histidina/química , Histidina/genética , Histidina/metabolismo , Humanos , Metionina/metabolismo , Camundongos , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/genética , Oligopeptídeos/química , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...