Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5789, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987539

RESUMO

The outcome of CRISPR-Cas-mediated genome modifications is dependent on DNA double-strand break (DSB) processing and repair pathway choice. Homology-directed repair (HDR) of protein-blocked DSBs requires DNA end resection that is initiated by the endonuclease activity of the MRE11 complex. Using reconstituted reactions, we show that Cas9 breaks are unexpectedly not directly resectable by the MRE11 complex. In contrast, breaks catalyzed by Cas12a are readily processed. Cas9, unlike Cas12a, bridges the broken ends, preventing DSB detection and processing by MRE11. We demonstrate that Cas9 must be dislocated after DNA cleavage to allow DNA end resection and repair. Using single molecule and bulk biochemical assays, we next find that the HLTF translocase directly removes Cas9 from broken ends, which allows DSB processing by DNA end resection or non-homologous end-joining machineries. Mechanistically, the activity of HLTF requires its HIRAN domain and the release of the 3'-end generated by the cleavage of the non-target DNA strand by the Cas9 RuvC domain. Consequently, HLTF removes the H840A but not the D10A Cas9 nickase. The removal of Cas9 H840A by HLTF explains the different cellular impact of the two Cas9 nickase variants in human cells, with potential implications for gene editing.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Quebras de DNA de Cadeia Dupla , DNA , Humanos , Proteína 9 Associada à CRISPR/metabolismo , Proteína 9 Associada à CRISPR/genética , DNA/metabolismo , DNA/genética , Proteína Homóloga a MRE11/metabolismo , Proteína Homóloga a MRE11/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/genética , Edição de Genes , Endonucleases/metabolismo , Endonucleases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , Reparo do DNA por Junção de Extremidades , Clivagem do DNA , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
2.
Mol Cell ; 84(12): 2223-2237.e4, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38870937

RESUMO

In Saccharomyces cerevisiae (S. cerevisiae), Mre11-Rad50-Xrs2 (MRX)-Sae2 nuclease activity is required for the resection of DNA breaks with secondary structures or protein blocks, while in humans, the MRE11-RAD50-NBS1 (MRN) homolog with CtIP is needed to initiate DNA end resection of all breaks. Phosphorylated Sae2/CtIP stimulates the endonuclease activity of MRX/N. Structural insights into the activation of the Mre11 nuclease are available only for organisms lacking Sae2/CtIP, so little is known about how Sae2/CtIP activates the nuclease ensemble. Here, we uncover the mechanism of Mre11 activation by Sae2 using a combination of AlphaFold2 structural modeling of biochemical and genetic assays. We show that Sae2 stabilizes the Mre11 nuclease in a conformation poised to cleave substrate DNA. Several designs of compensatory mutations establish how Sae2 activates MRX in vitro and in vivo, supporting the structural model. Finally, our study uncovers how human CtIP, despite considerable sequence divergence, employs a similar mechanism to activate MRN.


Assuntos
Proteínas de Ligação a DNA , Endodesoxirribonucleases , Endonucleases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Endonucleases/metabolismo , Endonucleases/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/química , Humanos , Exodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Modelos Moleculares , Fosforilação , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Quebras de DNA de Cadeia Dupla , Hidrolases Anidrido Ácido/metabolismo , Hidrolases Anidrido Ácido/genética , Mutação , Proteína Homóloga a MRE11/metabolismo , Proteína Homóloga a MRE11/genética , Reparo do DNA , Ativação Enzimática
3.
Nat Commun ; 15(1): 2890, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570537

RESUMO

DNA double-strand breaks (DSBs) can be repaired by several pathways. In eukaryotes, DSB repair pathway choice occurs at the level of DNA end resection and is controlled by the cell cycle. Upon cell cycle-dependent activation, cyclin-dependent kinases (CDKs) phosphorylate resection proteins and thereby stimulate end resection and repair by homologous recombination (HR). However, inability of CDK phospho-mimetic mutants to bypass this cell cycle regulation, suggests that additional cell cycle regulators may be important. Here, we identify Dbf4-dependent kinase (DDK) as a second major cell cycle regulator of DNA end resection. Using inducible genetic and chemical inhibition of DDK in budding yeast and human cells, we show that end resection and HR require activation by DDK. Mechanistically, DDK phosphorylates at least two resection nucleases in budding yeast: the Mre11 activator Sae2, which promotes resection initiation, as well as the Dna2 nuclease, which promotes resection elongation. Notably, synthetic activation of DDK allows limited resection and HR in G1 cells, suggesting that DDK is a key component of DSB repair pathway selection.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Saccharomyces cerevisiae , Humanos , Ciclo Celular , Recombinação Homóloga , Divisão Celular , Endonucleases/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , DNA , Reparo do DNA , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Biochem Biophys Res Commun ; 695: 149464, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38217957

RESUMO

DNA double strand breaks (DSBs) can be detrimental to the cell and need to be efficiently repaired. A first step in DSB repair is to bring the free ends in close proximity to enable ligation by non-homologous end-joining (NHEJ), while the more precise, but less available, repair by homologous recombination (HR) requires close proximity of a sister chromatid. The human MRE11-RAD50-NBS1 (MRN) complex, Mre11-Rad50-Xrs2 (MRX) in yeast, is involved in both repair pathways. Here we use nanofluidic channels to study, on the single DNA molecule level, how MRN, MRX and their constituents interact with long DNA and promote DNA bridging. Nanofluidics is a suitable method to study reactions on DNA ends since no anchoring of the DNA end(s) is required. We demonstrate that NBS1 and Xrs2 play important, but differing, roles in the DNA tethering by MRN and MRX. NBS1 promotes DNA bridging by MRN consistent with tethering of a repair template. MRX shows a "synapsis-like" DNA end-bridging, stimulated by the Xrs2 subunit. Our results highlight the different ways MRN and MRX bridge DNA, and the results are in agreement with their key roles in HR and NHEJ, respectively, and contribute to the understanding of the roles of NBS1 and Xrs2 in DSB repair.


Assuntos
Proteínas de Ligação a DNA , Endodesoxirribonucleases , Proteínas de Saccharomyces cerevisiae , Humanos , DNA/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Genes Dev ; 37(3-4): 119-135, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36746606

RESUMO

DNA double-strand break (DSB) repair is initiated by DNA end resection. CtIP acts in short-range resection to stimulate MRE11-RAD50-NBS1 (MRN) to endonucleolytically cleave 5'-terminated DNA to bypass protein blocks. CtIP also promotes the DNA2 helicase-nuclease to accelerate long-range resection downstream from MRN. Here, using AlphaFold2, we identified CtIP-F728E-Y736E as a separation-of-function mutant that is still proficient in conjunction with MRN but is not able to stimulate ssDNA degradation by DNA2. Accordingly, CtIP-F728E-Y736E impairs physical interaction with DNA2. Cellular assays revealed that CtIP-F728E-Y736E cells exhibit reduced DSB-dependent chromatin-bound RPA, impaired long-range resection, and increased sensitivity to DSB-inducing drugs. Previously, CtIP was shown to be targeted by PLK1 to inhibit long-range resection, yet the underlying mechanism was unclear. We show that the DNA2-interacting region in CtIP includes the PLK1 target site at S723. The integrity of S723 in CtIP is necessary for the stimulation of DNA2, and phosphorylation of CtIP by PLK1 in vitro is consequently inhibitory, explaining why PLK1 restricts long-range resection. Our data support a model in which CDK-dependent phosphorylation of CtIP activates resection by MRN in S phase, and PLK1-mediated phosphorylation of CtIP disrupts CtIP stimulation of DNA2 to attenuate long-range resection later at G2/M.


Assuntos
Proteínas de Transporte , Quebras de DNA de Cadeia Dupla , Proteínas de Transporte/genética , Endodesoxirribonucleases/metabolismo , Reparo do DNA , DNA Helicases/genética , DNA Helicases/metabolismo , DNA
6.
EMBO J ; 42(3): e111998, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36541070

RESUMO

The Werner Syndrome helicase, WRN, is a promising therapeutic target in cancers with microsatellite instability (MSI). Long-term MSI leads to the expansion of TA nucleotide repeats proposed to form cruciform DNA structures, which in turn cause DNA breaks and cell lethality upon WRN downregulation. Here we employed biochemical assays to show that WRN helicase can efficiently and directly unfold cruciform structures, thereby preventing their cleavage by the SLX1-SLX4 structure-specific endonuclease. TA repeats are particularly prone to form cruciform structures, explaining why these DNA sequences are preferentially broken in MSI cells upon WRN downregulation. We further demonstrate that the activity of the DNA mismatch repair (MMR) complexes MutSα (MSH2-MSH6), MutSß (MSH2-MSH3), and MutLα (MLH1-PMS2) similarly decreases the level of DNA cruciforms, although the mechanism is different from that employed by WRN. When combined, WRN and MutLα exhibited higher than additive effects in in vitro cruciform processing, suggesting that WRN and the MMR proteins may cooperate. Our data explain how WRN and MMR defects cause genome instability in MSI cells with expanded TA repeats, and provide a mechanistic basis for their recently discovered synthetic-lethal interaction with promising applications in precision cancer therapy.


Assuntos
Reparo de Erro de Pareamento de DNA , DNA Cruciforme , Humanos , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Instabilidade de Microssatélites , Helicase da Síndrome de Werner/genética , Helicase da Síndrome de Werner/metabolismo , Proteína 1 Homóloga a MutL/genética
7.
Nat Commun ; 12(1): 3856, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158470

RESUMO

The MRN complex (MRX in Saccharomyces cerevisiae, made of Mre11, Rad50 and Nbs1/Xrs2) initiates double-stranded DNA break repair and activates the Tel1/ATM kinase in the DNA damage response. Telomeres counter both outcomes at chromosome ends, partly by keeping MRN-ATM in check. We show that MRX is disabled by telomeric protein Rif2 through an N-terminal motif (MIN, MRN/X-inhibitory motif). MIN executes suppression of Tel1, DNA end-resection and non-homologous end joining by binding the Rad50 N-terminal region. Our data suggest that MIN promotes a transition within MRX that is not conductive for endonuclease activity, DNA-end tethering or Tel1 kinase activation, highlighting an Achilles' heel in MRN, which we propose is also exploited by the RIF2 paralog ORC4 (Origin Recognition Complex 4) in Kluyveromyces lactis and the Schizosaccharomyces pombe telomeric factor Taz1, which is evolutionarily unrelated to Orc4/Rif2. This raises the possibility that analogous mechanisms might be deployed in other eukaryotes as well.


Assuntos
Motivos de Aminoácidos , DNA Helicases/metabolismo , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Telômero/metabolismo , Sequência de Aminoácidos , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA Helicases/genética , DNA Fúngico/genética , DNA Fúngico/metabolismo , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Instabilidade Genômica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Telômero/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
8.
Cell Rep ; 34(13): 108906, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33789097

RESUMO

The Mre11-Rad50-Xrs2 (MRX) complex detects and processes DNA double-strand breaks (DSBs). Its DNA binding and processing activities are regulated by transitions between an ATP-bound state and a post-hydrolysis cutting state that is nucleolytically active. Mre11 endonuclease activity is stimulated by Sae2, whose lack increases MRX persistence at DSBs and checkpoint activation. Here we show that the Rif2 protein inhibits Mre11 endonuclease activity and is responsible for the increased MRX retention at DSBs in sae2Δ cells. We identify a Rad50 residue that is important for Rad50-Rif2 interaction and Rif2 inhibition of Mre11 nuclease. This residue is located near a Rad50 surface that binds Sae2 and is important in stabilizing the Mre11-Rad50 (MR) interaction in the cutting state. We propose that Sae2 stimulates Mre11 endonuclease activity by stabilizing a post-hydrolysis MR conformation that is competent for DNA cleavage, whereas Rif2 antagonizes this Sae2 function and stabilizes an endonuclease inactive MR conformation.


Assuntos
Quebras de DNA de Cadeia Dupla , Endonucleases/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Pontos de Checagem do Ciclo Celular , Dano ao DNA , Endonucleases/genética , Deleção de Genes , Modelos Biológicos , Mutação/genética , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/genética
10.
Nature ; 586(7830): 618-622, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32814904

RESUMO

During prophase of the first meiotic division, cells deliberately break their DNA1. These DNA breaks are repaired by homologous recombination, which facilitates proper chromosome segregation and enables the reciprocal exchange of DNA segments between homologous chromosomes2. A pathway that depends on the MLH1-MLH3 (MutLγ) nuclease has been implicated in the biased processing of meiotic recombination intermediates into crossovers by an unknown mechanism3-7. Here we have biochemically reconstituted key elements of this pro-crossover pathway. We show that human MSH4-MSH5 (MutSγ), which supports crossing over8, binds branched recombination intermediates and associates with MutLγ, stabilizing the ensemble at joint molecule structures and adjacent double-stranded DNA. MutSγ directly stimulates DNA cleavage by the MutLγ endonuclease. MutLγ activity is further stimulated by EXO1, but only when MutSγ is present. Replication factor C (RFC) and the proliferating cell nuclear antigen (PCNA) are additional components of the nuclease ensemble, thereby triggering crossing-over. Saccharomyces cerevisiae strains in which MutLγ cannot interact with PCNA present defects in forming crossovers. Finally, the MutLγ-MutSγ-EXO1-RFC-PCNA nuclease ensemble preferentially cleaves DNA with Holliday junctions, but shows no canonical resolvase activity. Instead, it probably processes meiotic recombination intermediates by nicking double-stranded DNA adjacent to the junction points9. As DNA nicking by MutLγ depends on its co-factors, the asymmetric distribution of MutSγ and RFC-PCNA on meiotic recombination intermediates may drive biased DNA cleavage. This mode of MutLγ nuclease activation might explain crossover-specific processing of Holliday junctions or their precursors in meiotic chromosomes4.


Assuntos
Troca Genética , Endonucleases/metabolismo , Meiose , Proteína 1 Homóloga a MutL/metabolismo , Proteínas MutL/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Cromossomos Humanos/genética , Sequência Conservada , DNA/metabolismo , Clivagem do DNA , Enzimas Reparadoras do DNA/metabolismo , DNA Cruciforme/metabolismo , Exodesoxirribonucleases/metabolismo , Humanos , Proteína 1 Homóloga a MutL/química , Proteínas MutL/química , Proteínas MutS/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína de Replicação C/metabolismo
11.
Proc Natl Acad Sci U S A ; 116(12): 5505-5513, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30819891

RESUMO

To repair DNA double-strand breaks by homologous recombination, the 5'-terminated DNA strands must first be resected to produce 3' overhangs. Mre11 from Saccharomyces cerevisiae is a 3' → 5' exonuclease that is responsible for 5' end degradation in vivo. Using plasmid-length DNA substrates and purified recombinant proteins, we show that the combined exonuclease and endonuclease activities of recombinant MRX-Sae2 preferentially degrade the 5'-terminated DNA strand, which extends beyond the vicinity of the DNA end. Mechanistically, Rad50 restricts the Mre11 exonuclease in an ATP binding-dependent manner, preventing 3' end degradation. Phosphorylated Sae2, along with stimulating the MRX endonuclease as shown previously, also overcomes this inhibition to promote the 3' → 5' exonuclease of MRX, which requires ATP hydrolysis by Rad50. Our results support a model in which MRX-Sae2 catalyzes 5'-DNA end degradation by stepwise endonucleolytic DNA incisions, followed by exonucleolytic 3' → 5' degradation of the individual DNA fragments. This model explains how both exonuclease and endonuclease activities of Mre11 functionally integrate within the MRX-Sae2 ensemble to resect 5'-terminated DNA.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Endonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Instabilidade Genômica , Recombinação Homóloga , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
12.
Nat Commun ; 9(1): 4016, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30275497

RESUMO

DNA end resection plays a critical function in DNA double-strand break repair pathway choice. Resected DNA ends are refractory to end-joining mechanisms and are instead channeled to homology-directed repair. Using biochemical, genetic, and imaging methods, we show that phosphorylation of Saccharomyces cerevisiae Sae2 controls its capacity to promote the Mre11-Rad50-Xrs2 (MRX) nuclease to initiate resection of blocked DNA ends by at least two distinct mechanisms. First, DNA damage and cell cycle-dependent phosphorylation leads to Sae2 tetramerization. Second, and independently, phosphorylation of the conserved C-terminal domain of Sae2 is a prerequisite for its physical interaction with Rad50, which is also crucial to promote the MRX endonuclease. The lack of this interaction explains the phenotype of rad50S mutants defective in the processing of Spo11-bound DNA ends during meiotic recombination. Our results define how phosphorylation controls the initiation of DNA end resection and therefore the choice between the key DNA double-strand break repair mechanisms.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Reparo de DNA por Recombinação/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Ciclo Celular , Reparo do DNA por Junção de Extremidades/fisiologia , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/metabolismo , Endonucleases/química , Endonucleases/genética , Exodesoxirribonucleases/metabolismo , Meiose/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Fosforilação , Ligação Proteica , Multimerização Proteica , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
13.
Genes Dev ; 31(23-24): 2325-2330, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321179

RESUMO

DNA double-strand break repair by homologous recombination is initiated by DNA end resection, which is commenced by the Mre11-Rad50-Xrs2 complex and Sae2 in yeast. Here we report that the nonhomologous end joining factor Ku limits the exonuclease activity of Mre11 and promotes its endonuclease to cleave 5'-terminated DNA strands at break sites. Following initial endonucleolytic cleavage past the obstacle, Exo1 specifically extends the resection track, leading to the generation of long 3' overhangs that are required for homologous recombination. These experiments provide mechanistic insights into how short-range and long-range DNA end resection enzymes overcome obstacles near broken DNA ends to initiate recombination.


Assuntos
Reparo do DNA por Junção de Extremidades , Endonucleases/metabolismo , Exonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Animais , Clivagem do DNA , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Ativação Enzimática/genética , Exodesoxirribonucleases/metabolismo , Complexos Multiproteicos/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Células Sf9
14.
Mol Cell ; 64(5): 940-950, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27889449

RESUMO

To repair a DNA double-strand break (DSB) by homologous recombination (HR), the 5'-terminated strand of the DSB must be resected. The human MRE11-RAD50-NBS1 (MRN) and CtIP proteins were implicated in the initiation of DNA end resection, but the underlying mechanism remained undefined. Here, we show that CtIP is a co-factor of the MRE11 endonuclease activity within the MRN complex. This function is absolutely dependent on CtIP phosphorylation that includes the key cyclin-dependent kinase target motif at Thr-847. Unlike in yeast, where the Xrs2/NBS1 subunit is dispensable in vitro, NBS1 is absolutely required in the human system. The MRE11 endonuclease in conjunction with RAD50, NBS1, and phosphorylated CtIP preferentially cleaves 5'-terminated DNA strands near DSBs. Our results define the initial step of HR that is particularly relevant for the processing of DSBs bearing protein blocks.


Assuntos
Proteínas de Ciclo Celular/genética , Reparo do DNA por Junção de Extremidades/genética , DNA Helicases/genética , Recombinação Homóloga/genética , Complexos Multiproteicos/genética , Hidrolases Anidrido Ácido , Proteínas de Transporte , Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA , Proteínas de Ligação a DNA , Endodesoxirribonucleases , Humanos , Proteína Homóloga a MRE11 , Proteínas Nucleares , Fosforilação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
Mol Cell ; 64(2): 405-415, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27746018

RESUMO

The Mre11-Rad50-Xrs2/Nbs1 (MRX/N) complex orchestrates the cellular response to DSBs through its structural, enzymatic, and signaling roles. Xrs2/Nbs1 is essential for nuclear translocation of Mre11, but its role as a component of the complex is not well defined. Here, we demonstrate that nuclear localization of Mre11 (Mre11-NLS) is able to bypass several functions of Xrs2, including DNA end resection, meiosis, hairpin resolution, and cellular resistance to clastogens. Using purified components, we show that the MR complex has equivalent activity to MRX in cleavage of protein-blocked DNA ends. Although Xrs2 physically interacts with Sae2, we found that end resection in its absence remains Sae2 dependent in vivo and in vitro. MRE11-NLS was unable to rescue the xrs2Δ defects in Tel1/ATM kinase signaling and non-homologous end joining, consistent with the role of Xrs2 as a chaperone and adaptor protein coordinating interactions between the MR complex and other repair proteins.


Assuntos
Reparo do DNA por Junção de Extremidades , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sítios de Ligação , Camptotecina/farmacologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Endonucleases/deficiência , Endonucleases/genética , Exodesoxirribonucleases/metabolismo , Regulação Fúngica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metanossulfonato de Metila/farmacologia , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
16.
Nature ; 514(7520): 122-5, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25231868

RESUMO

To repair double-strand DNA breaks by homologous recombination, the 5'-terminated DNA strand must first be resected, which generates 3' single-stranded DNA overhangs. Genetic evidence suggests that this process is initiated by the Mre11-Rad50-Xrs2 (MRX) complex. However, its involvement was puzzling, as the complex possesses exonuclease activity with the opposite (3' to 5') polarity from that required for homologous recombination. Consequently, a bidirectional model has been proposed whereby dsDNA is first incised endonucleolytically and MRX then proceeds back to the dsDNA end using its 3' to 5' exonuclease. The endonuclease creates entry sites for Sgs1-Dna2 and/or Exo1, which then carry out long-range resection in the 5' to 3' direction. However, the identity of the endonuclease remained unclear. Using purified Saccharomyces cerevisiae proteins, we show that Sae2 promotes dsDNA-specific endonuclease activity by the Mre11 subunit within the MRX complex. The endonuclease preferentially cleaves the 5'-terminated dsDNA strand, which explains the polarity paradox. The dsDNA end clipping is strongly stimulated by protein blocks at the DNA end, and requires the ATPase activity of Rad50 and physical interactions between MRX and Sae2. Our results suggest that MRX initiates dsDNA break processing by dsDNA endonuclease rather than exonuclease activity, and that Sae2 is the key regulator of this process. These findings demonstrate a probable mechanism for the initiation of dsDNA break processing in both vegetative and meiotic cells.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Endonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Recombinação Homóloga , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Adenosina Trifosfatases/metabolismo , DNA Fúngico/metabolismo , Meiose , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/genética
17.
Am J Clin Pathol ; 142(1): 121-32, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24926095

RESUMO

OBJECTIVES: The outcome of patients with primary melanoma (PM) cannot be completely explained based on currently adopted clinical-histopathologic criteria. In this study, we evaluated the potential prognostic value of mismatch repair protein expression in PMs. METHODS: We examined the immunohistochemical staining of mismatch repair proteins in 18 benign nevi and 101 stage I to III PMs and investigated their association with tumor clinicopathologic variables and melanoma mortality. RESULTS: Expression of MSH2, MLH1, and PMS2 was high in benign nevi and reduced in a subset of PMs. Conversely, MSH6 expression was absent or extremely low in benign nevi and increased in a subset of PMs. In the multivariate analysis, including sex, age, Breslow thickness, and ulceration, high MSH6 expression in PMs (ie, immunostaining in >20% of tumor cells) was significantly associated with an increased risk of melanoma mortality (relative risk, 3.76; 95% confidence interval, 1.12-12.70). CONCLUSIONS: MSH6 protein expression can be a valuable marker to improve prognosis assessment in PMs.


Assuntos
Reparo de Erro de Pareamento de DNA , Proteínas de Ligação a DNA/metabolismo , Melanoma/metabolismo , Nevo/metabolismo , Neoplasias Cutâneas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina Trifosfatases/metabolismo , Adulto , Idoso , Enzimas Reparadoras do DNA/metabolismo , Feminino , Humanos , Masculino , Melanoma/mortalidade , Pessoa de Meia-Idade , Endonuclease PMS2 de Reparo de Erro de Pareamento , Proteína 1 Homóloga a MutL , Proteína 2 Homóloga a MutS/metabolismo , Proteínas Nucleares/metabolismo , Prognóstico , Neoplasias Cutâneas/mortalidade , Taxa de Sobrevida
18.
PLoS One ; 9(2): e87914, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24505331

RESUMO

Highly active antiretroviral therapy (HAART) can reduce levels of human immunodeficiency virus type 1 (HIV-1) to undetectable levels in infected individuals, but the virus is not eradicated. The mechanisms of viral persistence during HAART are poorly defined, but some reservoirs have been identified, such as latently infected resting memory CD4⁺ T cells. During latency, in addition to blocks at the initiation and elongation steps of viral transcription, there is a block in the export of viral RNA (vRNA), leading to the accumulation of multiply-spliced transcripts in the nucleus. Two of the genes encoded by the multiply-spliced transcripts are Tat and Rev, which are essential early in the viral replication cycle and might indicate the state of infection in a given population of cells. Here, the levels of multiply-spliced transcripts were compared to the levels of gag-containing RNA in tissue samples from RT-SHIV-infected rhesus macaques treated with HAART. Splice site sequence variation was identified during development of a TaqMan PCR assay. Multiply-spliced transcripts were detected in gastrointestinal and lymphatic tissues, but not the thymus. Levels of multiply-spliced transcripts were lower than levels of gag RNA, and both correlated with plasma virus loads. The ratio of multiply-spliced to gag RNA was greatest in the gastrointestinal samples from macaques with plasma virus loads <50 vRNA copies per mL at necropsy. Levels of gag RNA and multiply-spliced mRNA in tissues from RT-SHIV-infected macaques correlate with plasma virus load.


Assuntos
Terapia Antirretroviral de Alta Atividade , Linfócitos T CD4-Positivos , Infecções por HIV/sangue , HIV-1/fisiologia , RNA Mensageiro/sangue , RNA Viral/sangue , Replicação Viral/efeitos dos fármacos , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD4-Positivos/virologia , Humanos , Macaca mulatta , Masculino , Carga Viral
19.
Proc Natl Acad Sci U S A ; 110(18): E1661-8, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23589858

RESUMO

Homologous recombination is a major pathway for repair of DNA double-strand breaks. This repair process is initiated by resection of the 5'-terminated strand at the break site. In yeast, resection is carried out by three nucleolytic complexes: Mre11-Rad50-Xrs2, which functions at the initial step and also stimulates the two processive pathways, Sgs1-Dna2 and Exonuclease 1 (Exo1). Here we investigated the relationship between the three resection pathways with a focus on Exo1. Exo1 preferentially degrades the 5'-terminal stand of duplex DNA that is single stranded at the 3' end, in agreement with its role downstream of the Mre11-Rad50-Xrs2 complex. Replication protein A (RPA) stimulates DNA end resection by Exo1 by both preventing nonspecific binding of Exo1 to and preventing degradation of single-stranded DNA. Nucleolytic degradation of DNA by Exo1 is inhibited by the helicase-deficient Sgs1 K706A mutant protein and, reciprocally, the nuclease-deficient Exo1 D173A mutant protein inhibits DNA unwinding by Sgs1. Thus, the activities of Sgs1 and Exo1 at DNA ends are mutually exclusive, establishing biochemically that both machineries function independently in DNA end processing. We also reconstituted Sgs1-Top3-Rmi1-RPA-Dna2 and Exo1 resection reactions both individually and combined, either with or without the Mre11-Rad50-Xrs2 complex. We show that the yeast Sgs1-Dna2 and Exo1 pathways do not stimulate one another and function as independent and separate DNA end-processing machineries, even in the presence of the stimulatory Mre11-Rad50-Xrs2 complex.


Assuntos
Quebras de DNA de Cadeia Simples , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , DNA Fúngico/metabolismo
20.
Nature ; 467(7311): 112-6, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20811461

RESUMO

The repair of DNA double-strand breaks (DSBs) by homologous recombination requires processing of broken ends. For repair to start, the DSB must first be resected to generate a 3'-single-stranded DNA (ssDNA) overhang, which becomes a substrate for the DNA strand exchange protein, Rad51 (ref. 1). Genetic studies have implicated a multitude of proteins in the process, including helicases, nucleases and topoisomerases. Here we biochemically reconstitute elements of the resection process and reveal that it requires the nuclease Dna2, the RecQ-family helicase Sgs1 and the ssDNA-binding protein replication protein-A (RPA). We establish that Dna2, Sgs1 and RPA constitute a minimal protein complex capable of DNA resection in vitro. Sgs1 helicase unwinds the DNA to produce an intermediate that is digested by Dna2, and RPA stimulates DNA unwinding by Sgs1 in a species-specific manner. Interestingly, RPA is also required both to direct Dna2 nucleolytic activity to the 5'-terminated strand of the DNA break and to inhibit 3' to 5' degradation by Dna2, actions that generate and protect the 3'-ssDNA overhang, respectively. In addition to this core machinery, we establish that both the topoisomerase 3 (Top3) and Rmi1 complex and the Mre11-Rad50-Xrs2 complex (MRX) have important roles as stimulatory components. Stimulation of end resection by the Top3-Rmi1 heterodimer and the MRX proteins is by complex formation with Sgs1 (refs 5, 6), which unexpectedly stimulates DNA unwinding. We suggest that Top3-Rmi1 and MRX are important for recruitment of the Sgs1-Dna2 complex to DSBs. Our experiments provide a mechanistic framework for understanding the initial steps of recombinational DNA repair in eukaryotes.


Assuntos
DNA Helicases/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Desoxirribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , RecQ Helicases/metabolismo , Proteína de Replicação A/metabolismo , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...