Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Biomed Eng ; 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36913086

RESUMO

There is an unrelenting interest in the development of a reliable bioartificial pancreas construct since the first description of this technology of encapsulated islets by Lim and Sun in 1980 because it promised to be a curative treatment for Type 1 Diabetes Mellitus (T1DM). Despite the promise of the concept of encapsulated islets, there are still some challenges that impede the full realization of the clinical potential of the technology. In this review, we will first present the justification for continued research and development of this technology. Next, we will review key barriers that impede progress in this field and discuss strategies that can be used to design a reliable construct capable of effective long-term performance after transplantation in diabetic patients. Finally, we will share our perspectives on areas of additional work for future research and development of the technology.

2.
Ann Biomed Eng ; 50(10): 1177-1186, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35804253

RESUMO

Exosomes are enclosed within a single outer membrane and exemplify a specific subtype of secreted vesicles. Exosomes transfer signalling molecules, including microRNAs (miRNAs), messenger RNA (mRNA), fatty acids, proteins, and growth factors, making them a promising therapeutic tool. In routine bioartificial pancreas fabrication, cells are immobilized in polymeric hydrogels lacking attachment capability for cells and other biological cues. In this opinion article, we will discuss the potential role that exosomes and their specific biofactors may play to improve and sustain the function of this bioartificial construct. We will particularly discuss the challenges associated with their isolation and characterization. Since stem cells are an attractive source of exosomes, we will present the advantages of using exosomes in place of stem cells in medical devices including the bioartificial pancreas. We will provide literature evidence of active biofactors in exosomes to support their incorporation in the matrix of encapsulated islets. This will include their potential beneficial effect on hypoxic injury to encapsulated islets. In summary, we propose that the biofactors contained in secreted exosomes have significant potential to enhance the performance of islets encapsulated in polymeric material hydrogels with perm-selective properties to provide immunoisolation for islet transplants as an insulin delivery platform in diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Exossomos , Transplante das Ilhotas Pancreáticas , Alginatos , Diabetes Mellitus Tipo 1/terapia , Humanos , Hidrogéis , Pâncreas
3.
Biotechnol Bioeng ; 115(9): 2341-2355, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29777589

RESUMO

Transplantation of encapsulated porcine islets is proposed to treat type 1 diabetes. However, the envelopment of fibrous tissue and the infiltration of immune cells impair islet function and eventually cause implant failure. It is known that hemodialysis using an ethylene vinyl alcohol (EVOH) membrane results in minor tissue responses. Therefore, we hypothesized that using a low-adhesive EVOH membrane for encapsulation may prevent host cell accumulation and fibrous capsule formation. In this study, rat islets suspended in chitosan gel were encapsulated in bags made from highly porous EVOH membranes, and their in vitro insulin secretion function as well as in vivo performance was evaluated. The results showed that the EVOH bag did not affect islet survival or glucose-stimulated insulin secretion. Whereas naked islets were dysfunctional after 7 days of culture in vitro, islets within the EVOH bag produced insulin continuously for 30 days. Streptozotocin-induced diabetic mice were given islets-chitosan gel-EVOH implants intraperitoneally (650-800 islets equivalent) and exhibited lower blood glucose levels and regained body weight during a 4-week observation period. The transplanted mice had higher levels of serum insulin and C-peptide, with an improved blood glucose disappearance rate. Retrieved implants had minor tissue adhesion, and histology showed a limited number of mononuclear cells and fibroblasts surrounding the implants. No invasion of host cells into the EVOH bags was noticed, and the encapsulated islets were intact and positive for insulin-glucagon immunostaining. In conclusion, an EVOH bag can protect encapsulated islets, limit fibrous capsule formation, and extend graft function.


Assuntos
Células Imobilizadas/metabolismo , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/terapia , Insulina/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Ilhotas Pancreáticas/metabolismo , Animais , Glicemia , Peso Corporal , Sobrevivência Celular , Sobrevivência de Enxerto , Camundongos , Polivinil , Ratos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...