Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurosci Biobehav Rev ; 132: 838-856, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34774900

RESUMO

Neurometabolic diseases (NMDs) are typically caused by genetic abnormalities affecting enzyme functions, which in turn interfere with normal development and activity of the nervous system. Although the individual disorders are rare, NMDs are collectively relatively common and often lead to lifelong difficulties and high societal costs. Neuropsychiatric manifestations, including ADHD symptoms, are prominent in many NMDs, also when the primary biochemical defect originates in cells and tissues outside the nervous system. ADHD symptoms have been described in phenylketonuria, tyrosinemias, alkaptonuria, succinic semialdehyde dehydrogenase deficiency, X-linked ichthyosis, maple syrup urine disease, and several mitochondrial disorders, but are probably present in many other NMDs and may pose diagnostic and therapeutic challenges. Here we review current literature linking NMDs with ADHD symptoms. We cite emerging evidence that many NMDs converge on common neurochemical mechanisms that interfere with monoamine neurotransmitter synthesis, transport, metabolism, or receptor functions, mechanisms that are also considered central in ADHD pathophysiology and treatment. Finally, we discuss the therapeutic implications of these findings and propose a path forward to increase our understanding of these relationships.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Depressores do Sistema Nervoso Central , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Humanos
2.
Sci Adv ; 6(29): eabb3713, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32733999

RESUMO

Carnosine and related ß-alanine-containing peptides are believed to be important antioxidants, pH buffers, and neuromodulators. However, their biosynthetic routes and therapeutic potential are still being debated. This study describes the first animal model lacking the enzyme glutamic acid decarboxylase-like 1 (GADL1). We show that Gadl1-/- mice are deficient in ß-alanine, carnosine, and anserine, particularly in the olfactory bulb, cerebral cortex, and skeletal muscle. Gadl1-/- mice also exhibited decreased anxiety, increased levels of oxidative stress markers, alterations in energy and lipid metabolism, and age-related changes. Examination of the GADL1 active site indicated that the enzyme may have multiple physiological substrates, including aspartate and cysteine sulfinic acid. Human genetic studies show strong associations of the GADL1 locus with plasma levels of carnosine, subjective well-being, and muscle strength. Together, this shows the multifaceted and organ-specific roles of carnosine peptides and establishes Gadl1 knockout mice as a versatile model to explore carnosine biology and its therapeutic potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...