Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005053

RESUMO

Surface electrical resistivity is a non-destructive technique that is sensitive to the microstructure of hydrated cement paste and the chemical composition of the pore solution in cement-based materials. In this study, a Wenner array was used to measure changes in mortar resistivity due to chloride ion diffusion as a function of electrode separation. Specimens were made from four mortar mixtures: 100% Ordinary Portland cement and 60% cement + 40% fly ash at two water/binder ratios of 0.55 and 0.40. The specimens were subjected to unidirectional chloride ion diffusion in a 2.8 M NaCl solution for 175 days. To determine the chloride penetration depth, three methods were used: silver nitrate spraying, chloride concentration profiles via potentiometric titration, and chloride concentration profiles via inversion of the resistivity data using the RES1D software (version 1.00.09 Beta). The results showed a linear relationship between the chloride ion penetration depth obtained via inversion of the surface electrical resistivity data versus the penetration depth from colorimetry and from chloride concentration profiling (both with R2 = 0.8612). Chloride penetration changed the conductivity of the pore solution; therefore, the resistivity decreased when increasing both the chloride concentration and the penetration depth. Inversion of surface resistivity data obtained with a Wenner array permitted non-destructive determination of chloride penetration. However, these results were obtained under laboratory environmental conditions and other scenarios must be addressed for wider applications.

2.
Materials (Basel) ; 14(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361473

RESUMO

Moisture distribution in cement-based materials is important from the durability point of view. In the present study, a portable three-magnet array with an elliptical surface radio frequency coil was used to undertake magnetic resonance measurements of moisture content in ordinary Portland cement mortar and concrete samples. Measurements along the length of the samples during capillary water absorption produced moisture content profiles that were compared with reference profiles acquired using a magnetic resonance imaging instrument. Profiles obtained with the three-magnet array were similar in shape and in penetration depth to those acquired with magnetic resonance imaging. The correlation coefficient between the moisture content measured with both techniques was r2 = 0.97. Similar values of saturated permeability of the mortars with identical w/c ratio were computed with the Hydrus 1D software based on the moisture content profiles. Additionally, inverse Laplace transformation of the signal decays provided the water-filled pore size distribution in saturated and unsaturated regions of the samples. The three-magnet array was successfully used to acquire nuclear magnetic resonance signal from a concrete sample, which was not possible with the magnetic resonance imaging instrument using the single-point imaging technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA