Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Nat Commun ; 4: 1476, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23403577

RESUMO

One of the most efficient plant resistance reactions to pathogen attack is the hypersensitive response, a form of programmed cell death at infection sites. The Arabidopsis transcription factor MYB30 is a positive regulator of hypersensitive cell death responses. Here we show that MIEL1 (MYB30-Interacting E3 Ligase1), an Arabidopsis RING-type E3 ubiquitin ligase that interacts with and ubiquitinates MYB30, leads to MYB30 proteasomal degradation and downregulation of its transcriptional activity. In non-infected plants, MIEL1 attenuates cell death and defence through degradation of MYB30. Following bacterial inoculation, repression of MIEL1 expression removes this negative regulation allowing sufficient MYB30 accumulation in the inoculated zone to trigger the hypersensitive response and restrict pathogen growth. Our work underlines the important role played by ubiquitination to control the hypersensitive response and highlights the sophisticated fine-tuning of plant responses to pathogen attack. Overall, this work emphasizes the importance of protein modification by ubiquitination during the regulation of transcriptional responses to stress in eukaryotic cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/imunologia , Proteólise , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica de Plantas , Microscopia Confocal , Células Vegetais/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Plantas Geneticamente Modificadas , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Transporte Proteico , Pseudomonas syringae/fisiologia , Nicotiana/genética , Fatores de Transcrição/genética , Transcrição Gênica , Ubiquitinação
4.
Plant Signal Behav ; 7(2): 217-21, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22353865

RESUMO

In order to promote virulence, Gram-negative bacteria have evolved the ability to inject so-called type III effector proteins into host cells. The plant cell nucleus appears to be a subcellular compartment repeatedly targeted by bacterial effectors. In agreement with this observation, mounting evidence suggests that manipulation of host transcription is a major strategy developed by bacteria to counteract plant defense responses. It has been suggested that bacterial effectors may adopt at least three alternative, although not mutually exclusive, strategies to subvert host transcription. T3Es may (1) act as transcription factors that directly activate transcription in host cells, (2) affect histone packing and chromatin configuration, and/or (3) target host transcription factor activity. Here, we provide an overview on how all these strategies may lead to host transcriptional re-programming and, as a result, to improved bacterial multiplication inside plant cells.


Assuntos
Proteínas de Bactérias/metabolismo , Núcleo Celular/metabolismo , Bactérias Gram-Negativas/patogenicidade , Células Vegetais/microbiologia , Doenças das Plantas/microbiologia , Plantas/microbiologia , Transcrição Gênica , Cromatina/metabolismo , Bactérias Gram-Negativas/metabolismo , Histonas/metabolismo , Interações Hospedeiro-Patógeno , Células Vegetais/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Fatores de Transcrição/metabolismo , Virulência
5.
Plant Signal Behav ; 7(2): 184-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22353870

RESUMO

During evolution, pathogens have developed sophisticated strategies to suppress plant defense responses and promote successful colonization of their hosts. In their attempt to quell host resistance, Gram-negative phytopathogenic bacteria inject type III effectors (T3Es) into plant cells, where they typically target plant components essential for the establishment of defense responses. We have recently shown that the XopD T3E from the strain B100 of Xanthomonas campestris pathovar campestris (XopDXccB100) is able to target AtMYB30, a positive regulator of Arabidopsis defense responses. This protein interaction leads to inhibition of AtMYB30 transcriptional activity and promotion of bacterial virulence. Here, we describe the identification of the complete protein sequence of XopDXccB100, which presents an N-terminal extension of 40 amino acids with respect to the protein annotated in public databases. The implications of this finding are discussed.


Assuntos
Sequência de Aminoácidos , Proteínas de Arabidopsis/antagonistas & inibidores , Arabidopsis/microbiologia , Proteínas de Bactérias/química , Doenças das Plantas/microbiologia , Fatores de Transcrição/antagonistas & inibidores , Xanthomonas campestris/patogenicidade , Arabidopsis/metabolismo , Dados de Sequência Molecular , Transcrição Gênica , Virulência , Xanthomonas campestris/química
6.
Plant Cell ; 23(9): 3498-511, 2011 09.
Artigo em Inglês | MEDLINE | ID: mdl-21917550

RESUMO

Plant and animal pathogens inject type III effectors (T3Es) into host cells to suppress host immunity and promote successful infection. XopD, a T3E from Xanthomonas campestris pv vesicatoria, has been proposed to promote bacterial growth by targeting plant transcription factors and/or regulators. Here, we show that XopD from the B100 strain of X. campestris pv campestris is able to target MYB30, a transcription factor that positively regulates Arabidopsis thaliana defense and associated cell death responses to bacteria through transcriptional activation of genes related to very-long-chain fatty acid (VLCFA) metabolism. XopD specifically interacts with MYB30, resulting in inhibition of the transcriptional activation of MYB30 VLCFA-related target genes and suppression of Arabidopsis defense. The helix-loop-helix domain of XopD is necessary and sufficient to mediate these effects. These results illustrate an original strategy developed by Xanthomonas to subvert plant defense and promote development of disease.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Fatores de Transcrição/metabolismo , Xanthomonas campestris/patogenicidade , Arabidopsis/microbiologia , Regulação da Expressão Gênica de Plantas , Sequências Hélice-Alça-Hélice , Dados de Sequência Molecular , Doenças das Plantas/microbiologia , Imunidade Vegetal , Relação Estrutura-Atividade , Virulência , Xanthomonas campestris/metabolismo
7.
Plant Signal Behav ; 6(1): 13-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21248491

RESUMO

Eukaryotic organisms rely on intricate signaling networks to connect recognition of microbes with the activation of efficient defense reactions. Accumulating evidence indicates that phospholipids are more than mere structural components of biological membranes. Indeed, phospholipid-based signal transduction is widely used in plant cells to relay perception of extracellular signals. Upon perception of the invading microbe, several phospholipid hydrolyzing enzymes are activated that contribute to the establishment of an appropriate defense response. Activation of phospholipases is at the origin of the production of important defense signaling molecules, such as oxylipins and jasmonates, as well as the potent second messenger phosphatidic acid (PA), which has been shown to modulate the activity of a variety of proteins involved in defense signaling. Here, we provide an overview of recent reports describing the different plant phospholipase pathways that are activated during the establishment of plant defense reactions in response to pathogen attack.


Assuntos
Fosfolipases/metabolismo , Plantas/enzimologia , Plantas/imunologia , Transdução de Sinais , Modelos Biológicos
8.
Proc Natl Acad Sci U S A ; 107(34): 15281-6, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20696912

RESUMO

The hypersensitive response (HR), characterized by a rapid and localized cell death at the inoculation site, is one of the most efficient resistance reactions to pathogen attack in plants. The transcription factor AtMYB30 was identified as a positive regulator of the HR and resistance responses during interactions between Arabidopsis and bacteria. Here, we show that AtMYB30 and the secreted phospholipase AtsPLA(2)-alpha physically interact in vivo, following the AtMYB30-mediated specific relocalization of AtsPLA(2)-alpha from cytoplasmic vesicles to the plant cell nucleus. This protein interaction leads to repression of AtMYB30 transcriptional activity and negative regulation of plant HR. Moreover, Atspla(2)-alpha mutant plants are more resistant to bacterial inoculation, whereas AtsPLA(2)-alpha overexpression leads to decreased resistance, confirming that AtsPLA(2)-alpha is a negative regulator of AtMYB30-mediated defense. These data underline the importance of cellular dynamics and, particularly, protein translocation to the nucleus, for defense-associated gene regulation in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Fosfolipases A2 Secretórias/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Sequência de Bases , Primers do DNA/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Teste de Complementação Genética , Mutação , Fosfolipases A2 Secretórias/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Pseudomonas syringae/patogenicidade , RNA de Plantas/genética , RNA de Plantas/metabolismo , Nicotiana/genética , Nicotiana/microbiologia , Nicotiana/fisiologia , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
9.
PLoS One ; 5(12): e15773, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21203472

RESUMO

During evolution, pathogens have developed a variety of strategies to suppress plant-triggered immunity and promote successful infection. In Gram-negative phytopathogenic bacteria, the so-called type III protein secretion system works as a molecular syringe to inject type III effectors (T3Es) into plant cells. The XopD T3E from the strain 85-10 of Xanthomonas campestris pathovar vesicatoria (Xcv) delays the onset of symptom development and alters basal defence responses to promote pathogen growth in infected tomato leaves. XopD was previously described as a modular protein that contains (i) an N-terminal DNA-binding domain (DBD), (ii) two tandemly repeated EAR (ERF-associated amphiphillic repression) motifs involved in transcriptional repression, and (iii) a C-terminal cysteine protease domain, involved in release of SUMO (small ubiquitin-like modifier) from SUMO-modified proteins. Here, we show that the XopD protein that is produced and secreted by Xcv presents an additional N-terminal extension of 215 amino acids. Closer analysis of this newly identified N-terminal domain shows a low complexity region rich in lysine, alanine and glutamic acid residues (KAE-rich) with high propensity to form coiled-coil structures that confers to XopD the ability to form dimers when expressed in E. coli. The full length XopD protein identified in this study (XopD(1-760)) displays stronger repression of the XopD plant target promoter PR1, as compared to the XopD version annotated in the public databases (XopD(216-760)). Furthermore, the N-terminal extension of XopD, which is absent in XopD(216-760), is essential for XopD type III-dependent secretion and, therefore, for complementation of an Xcv mutant strain deleted from XopD in its ability to delay symptom development in tomato susceptible cultivars. The identification of the complete sequence of XopD opens new perspectives for future studies on the XopD protein and its virulence-associated functions in planta.


Assuntos
Xanthomonas campestris/metabolismo , Sequência de Aminoácidos , DNA/química , Proteínas de Ligação a DNA/química , Dimerização , Epitopos/química , Escherichia coli/metabolismo , Teste de Complementação Genética , Solanum lycopersicum/microbiologia , Espectrometria de Massas/métodos , Microscopia de Fluorescência/métodos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Nicotiana/genética , Nicotiana/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...