Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(4): 3632-3646, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38224163

RESUMO

Acetonitrile (CH3CN) is present in the interstellar medium (ISM) in a variety of environments. However, at the ultracold temperatures of the ISM, radical-molecule reactions are not widely investigated because of the experimental handicap of getting organic molecules in the gas phase by conventional techniques. The CRESU (French acronym for Reaction Kinetics in a Uniform Supersonic Flow) technique solves this problem. For this reason, we present in this work the kinetic study of the gas-phase reaction of CH3CN with one of the most ubiquitous radicals, the hydroxyl (OH) radical, as a function of temperature (11.7-177.5 K). The kinetic technique employed to investigate the CH3CN + OH reaction was the pulsed laser photolysis-laser induced fluorescence. The rate coefficient for this reaction k(T) has been observed to drastically increase from 177.5 K to 107.0 K (about 2 orders of magnitude), while the increase in k(T) from 107.0 K to 11.7 K was milder (around 4 times). The temperature dependent expressions for k(T) are provided in the two distinct T-ranges, excluding the upper limit obtained for k(177.5 K): In addition, the rate coefficients estimated by the canonical competitive unified statistical (CCUS) theory show a similar behaviour to the experimental results, when evaluated within the high-pressure limit. This is consistent with the experimentally observed independence of k(T) with total gas density at selected temperatures. Astrochemical networks, such as the KIDA database or UMIST, do not include the CH3CN + OH reaction as a potential depletion process for acetonitrile in the ISM because the current studies predict very low rate coefficients at IS temperatures. According to the model (T = 10 K), the impact of the titled reaction on the abundances of CH3CN appears to be negligible in dark molecular clouds of the ISM (∼1% of the total depletion reactions included in UMIST network). With respect to the potential formation of the CH2CN radical in those environments, even in the most favourable scenario, where this radical could be formed in a 100% yield from the CH3CN + OH reaction, this route would only contribute around 2% to the current assumed formation routes by the UMIST network.

2.
J Phys Chem A ; 126(39): 6973-6983, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36166752

RESUMO

The gas-phase reaction between trans-2-hexenal (T2H) and chlorine atoms (Cl) was studied using three complementary experimental setups at atmospheric pressure and room temperature. In this work, we studied the rate constant for the titled oxidation reaction as well as the formation of the gas-phase products and secondary organic aerosols (SOAs). The rate constant of the T2H + Cl reaction was determined using the relative method in a simulation chamber using proton-transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) to monitor the loss of T2H and the reference compound. An average reaction rate constant of (3.17 ± 0.72) × 10-10 cm3 molecule-1 s-1 was obtained. From this, the atmospheric lifetime of T2H due to Cl reaction was estimated to be 9 h for coastal regions. HCl, CO, and butanal were identified as primary products using Fourier transform infrared spectroscopy (FTIR). The molar yield of butanal was (6.4 ± 0.3)%. Formic acid was identified as a secondary product by FTIR. In addition, butanal, 2-chlorohexenal, and 2-hexenoic acid were identified as products by gas chromatography coupled to mass spectrometry but not quantified. A reaction mechanism is proposed based on the observed products. SOA formation was observed by using a fast mobility particle sizer spectrometer. The measured SOA yields reached maximum values of about 38% at high particle mass concentrations. This work exhibits for the first time that T2H can be a source of SOA in coastal atmospheres, where Cl concentrations can be high at dawn, or in industrial areas, such as ceramic industries, where Cl precursors may be present.

3.
Phys Chem Chem Phys ; 24(38): 23593-23601, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36134502

RESUMO

Nitrogen-bearing molecules, like methylamine (CH3NH2), can be the building blocks of amino acids in the interstellar medium (ISM). At the ultralow temperatures of the ISM, it is important to know its gas-phase reactivity towards interstellar radicals and the products formed. In this work, the kinetics of the OH + CH3NH2 reaction was experimentally and theoretically investigated at low- and high-pressure limits (LPL and HPL) between 10 and 1000 K. Moreover, the CH2NH2 and CH3NH yields were computed in the same temperature range for both pressure regimes. A pulsed CRESU (French acronym for Reaction Kinetics in a Uniform Supersonic Flow) apparatus was employed to determine the rate coefficient, k(T), in the 11.7-177.5 K range. A drastic increase of k(T) when the temperature is lowered was observed in agreement with theoretical calculations, evaluated by the competitive canonical unified statistical (CCUS) theory, below 300 K in the LPL regime. The same trend was observed in the HPL regime below 350 K, but the theoretical k(T) values were higher than the experimental ones. Above 200 K, the calculated rate coefficients are improved with respect to previous computational studies and are in excellent agreement with the experimental literature data. In the LPL, the formation of CH3NH becomes largely dominant below ca. 100 K. Conversely, in the HPL regime, CH2NH2 is the only product below 100 K, whereas CH3NH becomes dominant at 298 K with a branching ratio similar to the one found in the LPL regime (≈70%). At T > 300 K, both reaction channels are competitive independently of the pressure regime.

4.
J Phys Chem A ; 126(27): 4413-4423, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35776765

RESUMO

Unsaturated alcohols are volatile organic compounds (VOCs) that characterize the emissions of plants. Changes in climate together with related increases of biotic and abiotic stresses are expected to increase these emissions in the future. Ozonolysis is one of the oxidation pathways that control the fate of unsaturated alcohols in the atmosphere. The rate coefficients of the gas-phase O3 reaction with seven C5-C8 unsaturated alcohols were determined at 296 K using both absolute and relative kinetic methods. The following rate coefficients (cm3 molecule-1 s-1) were obtained using the absolute method: (1.1 ± 0.2) × 10-16 for cis-2-penten-1-ol, (1.2 ± 0.2) × 10-16 for trans-2-hexen-1-ol, (6.4 ± 1.0) × 10-17 for trans-3-hexen-1-ol, (5.8 ± 0.9) × 10-17 for cis-3-hexen-1-ol, (2.0 ± 0.3) × 10-17 for 1-octen-3-ol, and (8.4 ± 1.3) × 10-17 for trans-2-octen-1-ol. The following rate coefficients (cm3 molecule-1 s-1) were obtained using the relative method: (1.27 ± 0.11) × 10-16 for trans-2-hexen-1-ol, (5.01 ± 0.30) × 10-17 for trans-3-hexen-1-ol, (4.13 ± 0.34) × 10-17 for cis-3-hexen-1-ol, and (1.40 ± 0.12) × 10-16 for trans-4-hexen-1-ol. Alkenols display high reactivities with ozone with lifetimes in the hour range. Rate coefficients show a strong and complex dependence on the structure of the alkenol, particularly the relative position of the OH group toward the C═C double bond. The results are discussed and compared to both the available literature data and four structure-activity relationship (SAR) methods.


Assuntos
Álcoois , Ozônio , Álcoois/química , Atmosfera/química , Radical Hidroxila/química , Cinética , Ozônio/química
5.
Build Environ ; 219: 109132, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35578697

RESUMO

New COVID-19 variants, either of higher viral load such as delta or higher contagiousness like omicron, can lead to higher airborne transmission than historical strains. This paper highlights their implications for health policies, based on a clear analytical understanding and modeling of the airborne contamination paths, of the dose following exposure, and the importance of the counting unit for pathogens, itself linked to the dose-response law. Using the counting unit of Wells, i.e. the quantum of contagium, we develop the conservation equation of quanta which allows deriving the value of the quantum concentration at steady state for a well-mixed room. The link with the monitoring concentration of carbon dioxide is made and used for a risk analysis of a variety of situations for which we collected CO2 time-series observations. The main conclusions of these observations are that 1) the present norms of ventilation, are both insufficient and not respected, especially in a variety of public premises, leading to high risk of contamination and that 2) air can often be considered well-mixed. Finally, we insist that public health policy in the field of airborne transmission should be based on a multi parameter analysis such as the time of exposure, the quantum production rate, mask wearing and the infector proportion in the population in order to evaluate the risk, considering the whole complexity of dose evaluation. Recognizing airborne transmission requires thinking in terms of time of exposure rather than in terms of proximal distance.

6.
Chemosphere ; 276: 130193, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34088089

RESUMO

The gas-phase reaction of trans-2-pentenal (T2P) with Cl atoms was studied at atmospheric pressure and room temperature. A rate coefficient of (2.56 ± 0.83) × 10-10 cm3 molecule-1 s-1 was obtained using the relative rate method and isoprene, cyclohexane and ethanol as reference compounds. The kinetic study was carried out using a 300-L Teflon bag simulation chamber (IMT Lille Douai-France) and a 16-L Pyrex cell (UCLM-Ciudad Real-Spain), both coupled to the Fourier transform infrared (FTIR) technique. Gas-phase products and secondary organic aerosol (SOA) formation were studied at UCLM using a 16-L Pyrex cell and a 264-L quartz simulation chamber coupled to the FTIR and gas-chromatography-mass spectrometry (GC-MS) techniques. HCl, CO, and propanal were identified as products formed from the studied reaction and quantified by FTIR, the molar yield of the latter being (5.2 ± 0.2)%. Formic acid was identified as a secondary product and was quantified by FTIR with a yield of (6.2 ± 0.4)%. In addition, 2-chlorobutanal and 2-pentenoic acid were identified, but not quantified, by GC-MS as products. The SOA formation was investigated using a fast mobility particle sizer spectrometer. The observed SOA yields reached maximum values of around 7% at high particle mass concentrations. This work provides the first study of the formation of gaseous and particulate products for the reaction of Cl with T2P. A reaction mechanism is suggested to explain the formation of the observed gaseous products. The results are discussed in terms of structure-reactivity relationship, and the atmospheric implications derived from this study are commented as well.


Assuntos
Cinética , Aerossóis , Aldeídos , França , Espanha
7.
Phys Chem Chem Phys ; 22(36): 20562-20572, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32966434

RESUMO

Gas-phase reactions in the interstellar medium (ISM) are a source of molecules in this environment. The knowledge of the rate coefficient for neutral-neutral reactions as a function of temperature, k(T), is essential to improve astrochemical models. In this work, we have experimentally measured k(T) for the reaction between the OH radical and acetaldehyde, both present in many sources of the ISM. Laser techniques coupled to a CRESU system were used to perform the kinetic measurements. The obtained modified Arrhenius equation is k(T = 11.7-177.5 K) = (1.2 ± 0.2) × 10-11 (T/300 K)-(1.8±0.1) exp-{(28.7 ± 2.5)/T} cm3 molecule-1 s-1. The k(T) value of the title reaction has been measured for the first time below 60 K. No pressure dependence of k(T) was observed at ca. 21, 50, 64 and 106 K. Finally, a pure gas-phase model indicates that the title reaction could become the main CH3CO formation pathway in dark molecular clouds, assuming that CH3CO is the main reaction product at 10 K.

8.
ACS Earth Space Chem ; 3(9): 1873-1883, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31799490

RESUMO

The rate coefficient, k(T), for the gas-phase reaction between OH radicals and acetone CH3C(O)CH3, has been measured using the pulsed CRESU (French acronym for Reaction Kinetics in a Uniform Supersonic Flow) technique (T = 11.7-64.4 K). The temperature dependence of k(T = 10-300 K) has also been computed using a RRKM-Master equation analysis after partial revision of the potential energy surface. In agreement with previous studies we found that the reaction proceeds via initial formation of two pre-reactive complexes both leading to H2O + CH3C(O)CH2 by H-abstraction tunneling. The experimental k(T) was found to increase as temperature was lowered. The measured values have been found to be several orders of magnitude higher than k(300 K). This trend is reproduced by calculations, with a special good agreement with experiments below 25 K. The effect of total gas density on k(T) has been explored. Experimentally, no pressure dependence of k(20 K) and k(64 K) was observed, while k(50 K) at the largest gas density 4.47×1017 cm-3 is twice higher than the average values found at lower densities. The computed k(T) is also reported for 103 cm-3 of He (representative of the interstellar medium). The predicted rate coefficients at 10 K surround the experimental value which appears to be very close to the low pressure regime prevailing in the interstellar medium. For gas-phase model chemistry of interstellar molecular clouds, we suggest using the calculated value of 1.8×10-10 cm3 molecule-1 s-1 at 10 K and the reaction products are water and CH3C(O)CH2 radicals.

9.
Phys Chem Chem Phys ; 21(13): 6942-6957, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30868151

RESUMO

The reactivity of methanol (CH3OH) toward the hydroxyl (OH) radical was investigated in the temperature range 11.7-177.5 K using the CRESU (French acronym for Reaction Kinetics in a Uniform Supersonic Flow) technique. In the present study, the temperature dependence of the rate coefficient for the OH + CH3OH reaction, k(T), has been revisited and additional experimental and computational data are reported. New kinetic measurements were performed to fill the existing gaps (<22 K, 22-42 K and 88-123 K), reporting k(T < 20 K) for the first time. The lowest temperature ever achieved by a pulsed CRESU has been obtained in this work (11.7 K). k(T) abruptly increases by almost 2 orders of magnitude from 177.5 K to around 100 K. At T < 100 K, this increase is less pronounced, reaching the capture limit at temperatures below 22 K. The pressure dependence of k(T) has been investigated for selected temperatures and gas densities (1.5 × 1016 to 4.3 × 1017 cm-3), combining our results with those previously reported. No dependence was observed within the experimental uncertainties below 110 K. The high- and low-pressure rate coefficients, kHPL(T) and kLPL(T), were also studied in detail using high-level quantum chemical and theoretical kinetic methodologies, closely reproducing the experimental data between 20 and 400 K. The results suggest that the experimental data are near the high pressure limit at the lowest temperatures, but that the reaction remains a fast and effective source of CH2OH and CH3O at the low pressures and temperatures prevalent in the interstellar medium.

10.
Phys Chem Chem Phys ; 20(8): 5478-5489, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29082409

RESUMO

The reaction between cyano radicals (which are ubiquitous in interstellar clouds) and methylamine (a molecule detected in various interstellar sources) has been investigated in a synergistic experimental and theoretical study. The reaction has been found to be very fast in the entire range of temperatures investigated (23-297 K) by using a CRESU apparatus coupled to pulsed laser photolysis - laser induced fluorescence. The global experimental rate coefficient is given by In addition, dedicated electronic structure calculations of the underlying potential energy surface have been performed, together with capture theory and RRKM calculations. The experimental data have been interpreted in the light of the theoretical calculations and the product branching ratio has been established. According to the present study, in the range of temperatures investigated the title reaction is an efficient interstellar route of formation of cyanamide, NH2CN, another interstellar species. The second most important channel is the one leading to methyl cyanamide, CH3NHCN (an isomer of aminoacetonitrile), via a CN/H exchange mechanism with a yield of 12% of the global reaction in the entire range of temperatures explored. For a possible inclusion in future astrochemical models we suggest, by referring to the usual expression the following values: α = 3.68 × 10-12 cm3 molec-1 s-1, ß = -1.80, γ = 7.79 K for the channel leading to NH2CN + CH3; α = 5.05 × 10-13 cm3 molec-1 s-1, ß = -1.82, γ = 7.93 K for the channel leading to CH3NHCN + H.

11.
Phys Chem Chem Phys ; 20(8): 5415-5426, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-28959812

RESUMO

A new method is proposed to analytically represent the potential energy surface of reactions involving polyatomic molecules capable of accurately describing long-range interactions and saddle points, needed to describe low-temperature collisions. It is based on two terms, a reactive force field term and a many-body term. The reactive force field term accurately describes the fragments, long-range interactions among them and the saddle points for reactions. The many-body term increases the desired accuracy everywhere else. This method has been applied to the OH + H2CO → H2O + HCO reaction, giving a barrier of 27.4 meV. The simulated classical rate constants with this potential are in good agreement with recent experimental results [Ocaña et al., Astrophys. J., 2017, submitted], showing an important increase at temperatures below 100 K. The reaction mechanism is analyzed in detail here, and explains the observed behavior at low energy by the formation of long-lived collision complexes, with roaming trajectories, with a capture observed for very long impact parameters, >100 a.u., determined by the long-range dipole-dipole interaction.

12.
Angew Chem Int Ed Engl ; 56(30): 8618-8640, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28608975

RESUMO

The interstellar medium is of great interest to us as the place where stars and planets are born and from where, probably, the molecular precursors of life came to Earth. Astronomical observations, astrochemical modeling, and laboratory astrochemistry should go hand in hand to understand the chemical pathways to the formation of stars, planets, and biological molecules. We review here laboratory experiments devoted to investigations on the reaction dynamics of species of astrochemical interest at the temperatures of the interstellar medium and which were performed by using one of the most popular techniques in the field, CRESU. We discuss new technical developments and scientific ideas for CRESU, which, if realized, will bring us one step closer to understanding of the astrochemical history and the future of our universe.

13.
Phys Chem Chem Phys ; 18(22): 15118-32, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27199083

RESUMO

The gas phase reaction between the CN radical and acetonitrile CH3CN was investigated experimentally, at low temperatures, with the CRESU apparatus and a slow flow reactor to explore the temperature dependence of its rate coefficient from 354 K down to 23 K. Whereas a standard Arrhenius behavior was found at T > 200 K, indicating the presence of an activation barrier, a dramatic increase in the rate coefficient by a factor of 130 was observed when the temperature was decreased from 168 to 123 K. The reaction was found to be pressure independent at 297 K unlike the experiments carried out at 52 and 132 K. The work was complemented by ab initio transition state theory based master equation calculations using reaction pathways investigated with highly accurate thermochemical protocols. The role of collisional stabilization of a CNCH3CN van der Waals complex and of tunneling induced H atom abstractions were also considered. The experimental pressure dependence at 52 and 132 K is well reproduced by the theoretical calculations provided that an anharmonic state density is considered for the van der Waals complex CH3CNCN and its Lennard-Jones radius is adjusted. Furthermore, these calculations indicate that the experimental observations correspond to the fall-off regime and that tunneling remains small in the low-pressure regime. Hence, the studied reaction is essentially an association process at very low temperature. Implications for the chemistry of interstellar clouds and Titan are discussed.

14.
Nat Chem ; 6(2): 141-5, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24451590

RESUMO

The prototypical F + H2 â†’ HF + H reaction possesses a substantial energetic barrier (~800 K) and might therefore be expected to slow to a negligible rate at low temperatures. It is, however, the only source of interstellar HF, which has been detected in a wide range of cold (10-100 K) environments. In fact, the reaction does take place efficiently at low temperatures due to quantum-mechanical tunnelling. Rate constant measurements at such temperatures have essentially been limited to fast barrierless reactions, such as those between two radicals. Using uniform supersonic hydrogen flows we can now report direct experimental measurements of the rate of this reaction down to a temperature of 11 K, in remarkable agreement with state-of-the-art quantum reactive scattering calculations. The results will allow a stronger link to be made between observations of interstellar HF and the abundance of the most common interstellar molecule, H2, and hence a more accurate estimation of the total mass of astronomical objects.


Assuntos
Flúor/química , Hidrogênio/química , Temperatura Baixa , Gases/química , Teoria Quântica
15.
J Phys Chem A ; 117(1): 117-25, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23210721

RESUMO

The reaction of the OH radicals with 4-hydroxy-2-butanone was investigated in the gas phase using an absolute rate method at room temperature and over the pressure range 10-330 Torr in He and air as diluent gases. The rate coefficients were measured using pulsed laser photolysis (PLP) of H(2)O(2) to produce OH and laser induced fluorescence (LIF) to measure the OH temporal profile. An average value of (4.8 ± 1.2) × 10(-12) cm(3) molecule(-1) s(-1) was obtained. The OH quantum yield following the 266 nm pulsed laser photolysis of 4-hydroxy-2-butanone was measured for the first time and found to be about 0.3%. The investigated kinetic study required accurate measurements of the vapor pressure of 4-hydroxy-2-butanone, which was measured using a static apparatus. The vapor pressure was found to range from 0.056 to 7.11 Torr between 254 and 323 K. This work provides the first absolute rate coefficients for the reaction of 4-hydroxy-2-butanone with OH and the first experimental saturated vapor pressures of the studied compound below 311 K. The obtained results are compared to those of the literature and the effects of the experimental conditions on the reactivity are examined. The calculated tropospheric lifetime obtained in this work suggests that once emitted into the atmosphere, 4H2B may contribute to the photochemical pollution in a local or regional scale.

16.
Phys Chem Chem Phys ; 12(39): 12702-10, 2010 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20737063

RESUMO

We report the first measurements of rate constants for the reaction in which OH radicals associate with O(2) to form HO(3). Our recent measurements (Science, 2010, 328, 1258) have shown that the HO-O(2) bond dissociation energy is only (12.3 ± 0.3) kJ mol(-1). Consequently, above ca. 90 K under attainable experimental conditions, the rate of the reverse dissociation of HO(3) becomes comparable to, and then greater than, the rate of the forward association reaction. We have used the CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme) method to access low temperatures and have explored the kinetics of OH + O(2) + M → HO(3) + M in two series of experiments. At temperatures between 55.9 and 79.2 K, the OH radicals, created by pulsed laser photolysis of H(2)O(2) and observed by laser-induced fluorescence, decayed by pseudo-first-order kinetics to effectively zero concentration at longer times. The third-order rate constants derived from these experiments fit the expression: k(3rd)(o) (T) = (4.2 ± 1.9) × 10(-34) (T/298 K)(-(3.5 ± 0.3)) cm(6) molecule(-2) s(-1). At temperatures between 87.4 and 99.8 K, rate constants for the association reaction were determined allowing for the significant occurrence of the reverse dissociation reaction. The values of the derived rate constants are consistent with those obtained in the lower temperature range, though the errors are larger. The experimental values of k(3rd)(o) (T) are compared with (a) those for other association reactions involving species of similar complexity, and (b) values of k(3rd)(o) (T) estimated according to both the energy transfer (ET) and the radical-complex (RC) mechanisms. We conclude that the RC mechanism probably makes the major contribution to the association of OH + O(2) at the low temperatures of our experiments.

17.
Science ; 328(5983): 1258-62, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20522771

RESUMO

The role of HO3 as a temporary reservoir of atmospheric OH radicals remains an open question largely because of the considerable uncertainty in the value of the dissociation energy of the HO-O2 bond (D0) or, equivalently, the standard enthalpy of formation of HO3 (Delta(f)H;{\overline{);\circ }}$$). Using a supersonic flow apparatus, we have observed by means of laser-induced fluorescence the decay of OH radicals in the presence of O2 at temperatures between 55.7 and 110.8 kelvin (K). Between 87.4 and 99.8 K, the OH concentration approached a nonzero value at long times, allowing equilibrium constants for the reaction with O2 to be calculated. Using expressions for the equilibrium constant from classical and statistical thermodynamics, and values of partition functions and standard entropies calculated from spectroscopic data, we derived values of D0 = (12.3 +/- 0.3) kilojoules per mole and Delta(f)H;{\overline{);\circ }}$$ (298 K) = (19.3 +/- 0.5) kilojoules per mole. The atmospheric implications of HO3 formation are therefore very slight.

18.
Phys Chem Chem Phys ; 12(15): 3677-89, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20358064

RESUMO

The kinetics of the reactions of the linear butadiynyl radical, C4H (CCCCH), with a variety of unsaturated hydrocarbons have been studied over the temperature range of 39-300 K using a CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, or reaction kinetics in uniform supersonic flow) apparatus combined with the pulsed laser photolysis-laser induced fluorescence technique. The rate coefficients for all the reactions studied are found to all be in excess of 10(-10) cm(3) molecule(-1) s(-1) over the entire temperature range. They can be fitted with the following expressions (valid from 39 K to 300 K, with RMS deviations of the experimental points from the predicted values shown, to which should be added 10% possible systematic error) for reaction of C4H with alkenes: k(C2H4) = (1.95 +/- 0.17) x 10(-10) (T/298 K)(-0.40) exp(9.4 K/T) cm3 molecule(-1) s(-1); k(C3H6) = (3.25 +/- 0.12) x 10(-10) (T/298 K)(-0.84) exp(-48.9 K/T) cm3 molecule(-1) s(-1); k(1-C4H8) = (6.30 +/- 0.35) x 10(-10) (T/298 K)(-0.61) exp(-65.0 K/T) cm3 molecule(-1) s(-1), for reaction of C4H with dienes: k(C3H4) = (3.70 +/- 0.34) x 10(-10) (T/298 K)(-1.18) exp(-91.1 K/T) cm3 molecule(-1) s(-1); k(1,3-C4H6) = (5.37 +/- 0.30) x 10(-10) (T/298 K)(-1.25) exp(-116.8 K/T) cm3 molecule(-1) s(-1), and for reaction of C4H with alkynes: k(C2H2) = (1.82 +/- 0.19) x 10(-10) (T/298 K)(-1.06) exp(-65.9 K/T) cm3 molecule(-1) s(-1); k(C3H4) = (3.20 +/- 0.08) x 10(-10) (T/298 K)(-0.82) exp(-47.5 K/T) cm3 molecule(-1) s(-1); k(1-C4H6) = (3.48 +/- 0.14) x 10(-10) (T/298 K)(-0.65) exp(-58.4 K/T) cm3 molecule(-1) s(-1). Possible reaction mechanisms and product channels are discussed in detail for each of these reactions. Potential implications of these results for models of low temperature chemical environments, in particular cold interstellar clouds and star-forming regions, are considered.

19.
Phys Chem Chem Phys ; 12(15): 3666-76, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20358063

RESUMO

The kinetics of the reactions of the linear butadiynyl radical, C4H (CCCCH), with methane, ethane, propane and butane have been studied over the temperature range of 39-300 K using a CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in Uniform Supersonic Flow) apparatus combined with the pulsed laser photolysis-laser induced fluorescence technique. The rate coefficients, except for the reaction with methane, show a negative temperature dependence and can be fitted with the following expressions over the temperature range of this study: k(C2H6) = 0.289 x 10(-10) (T/298 K)(-1.23) exp(-24.8 K/T) cm3 molecule(-1) s(-1); k(C3H8) = 1.06 x 10(-10) (T/298 K)(-1.36) exp(-56.9 K/T) cm3 molecule(-1) s(-1); k(C4H10) = 2.93 x 10(-10) (T/298 K)(-1.30) exp(-90.1 K/T) cm3 molecule(-1) s(-1). The rate coefficients for the reaction with methane were measured only at 200 K and 300 K yielding a positive temperature dependence: k(CH4) = 1.63 x 10(-11) exp(-610 K/T) cm3 molecule(-1) s(-1). Possible reaction mechanisms and product channels are discussed in detail for each of these reactions. Potential implications of these results for models of low temperature chemical environments, in particular cold interstellar clouds and planetary atmospheres such as that of Titan, are considered.

20.
Phys Chem Chem Phys ; 12(31): 8737-49, 2010 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-20372694

RESUMO

The chemical reaction dynamics to form o-, m-, and p-cyanophenylacetylene via the neutral-neutral reaction of ground state cyano radicals with phenylacetylene and D(1)-phenylacetylene were investigated in crossed beam experiments; these studies were combined with kinetics measurements of the rate coefficients at temperatures of 123, 200, and 298 K and supplemented by electronic structure calculations. The data suggest that the reaction is initiated by a barrier-less addition of the electrophilic cyano radical to the o-, m-, or p-position of the aromatic ring. The eventually fragmented via atomic hydrogen elimination to form o-, m-, and p-cyanophenylacetylene via tight exit transition states with the hydrogen atom being ejected almost perpendicularly to the molecular plane of the rotating complex. The overall reaction to form o-, m-, and p-cyanophenylacetylene was found to be exoergic by 89 +/- 18 kJ mol(-1) in nice agreement with the calculations. The o-cyanophenylacetylene isomer is of particular relevance as a potential building block to the formation of nitrogen-substituted didehydronaphthalene molecules in analogy to didehydronaphthalene in Titan's aerosol layers--a pathway hitherto neglected by the planetary science modeling community.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...