Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175698

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease of very high prevalence, especially in childhood, with no specific treatment or cure. As its pathogenesis is complex, multifactorial and not fully understood, further research is needed to increase knowledge and develop new targeted therapies. We have recently demonstrated the critical role of NAD+ and poly (ADP-ribose) (PAR) metabolism in oxidative stress and skin inflammation. Specifically, we found that hyperactivation of PARP1 in response to DNA damage induced by reactive oxygen species, and fueled by NAMPT-derived NAD+, mediated inflammation through parthanatos cell death in zebrafish and human organotypic 3D skin models of psoriasis. Furthermore, the aberrant induction of NAMPT and PARP activity was observed in the lesional skin of psoriasis patients, supporting the role of these signaling pathways in psoriasis and pointing to NAMPT and PARP1 as potential novel therapeutic targets in treating skin inflammatory disorders. In the present work, we report, for the first time, altered NAD+ and PAR metabolism in the skin of AD patients and a strong correlation between NAMPT and PARP1 expression and the lesional status of AD. Furthermore, using a human 3D organotypic skin model of AD, we demonstrate that the pharmacological inhibition of NAMPT and PARP reduces pathology-associated biomarkers. These results help to understand the complexity of AD and reveal new potential treatments for AD patients.


Assuntos
Dermatite Atópica , Psoríase , Animais , Humanos , Inflamação , NAD/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Poli ADP Ribosilação , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Psoríase/etiologia , Peixe-Zebra/metabolismo
2.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36076906

RESUMO

A retrospective study of 200 psoriasis patients and 100 healthy donors in a Spanish cohort was carried out to study the comorbidities associated with psoriasis and their association with the response to phototherapy. The results showed a higher incidence of psychiatric disease, liver disease, kidney disease, hypertension, heart disease, vascular disease, diabetes, gastrointestinal disease, autoimmune and infectious diseases, dyslipidemia, and psoriatic arthritis in patients with psoriasis than in the control group. The incidence of comorbidities was higher in psoriasis patients over 40 years old than in the control individuals of the same age, which could be indicative of premature aging. Phototherapy was seen to be an effective treatment in cases of moderate-severe psoriasis, total whitening being achieved in more than 30% of patients, with women showing a better response than men. Narrow-band ultraviolet B was found to be the most effective type of phototherapy, although achievement of PASI100 was lower in patients with liver disease, hypertension, heart disease, vascular disease, or diabetes. Strikingly, liver disease and anemia comorbidities favored therapeutic failure. Finally, zebrafish and human 3D organotypic models of psoriasis point to the therapeutic benefit of inhibiting the glucose transporter GLUT1 and the major regulator of blood glucose dipeptidyl peptidase 4. Our study reveals that specific comorbidities of psoriasis patients are associated to failure of phototherapy and, therefore, need to be considered when planning treatment for these patients.


Assuntos
Hipertensão , Psoríase , Terapia Ultravioleta , Adulto , Animais , Feminino , Humanos , Masculino , Fototerapia/métodos , Psoríase/tratamento farmacológico , Psoríase/terapia , Estudos Retrospectivos , Terapia Ultravioleta/métodos , Peixe-Zebra
3.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142384

RESUMO

Telomere shortening is the main molecular mechanism of aging, but not the only one. The adaptive immune system also ages, and older organisms tend to develop a chronic pro-inflammatory status with low-grade inflammation characterized by chronic activation of the innate immune system, called inflammaging. One of the main stimuli that fuels inflammaging is a high nutrient intake, triggering a metabolic inflammation process called metainflammation. In this study, we report the anti-inflammatory activity of several senolytic drugs in the context of chronic inflammation, by using two different zebrafish models: (i) a chronic skin inflammation model with a hypomorphic mutation in spint1a, the gene encoding the serine protease inhibitor, kunitz-type, 1a (also known as hai1a) and (ii) a non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH) model with inflammation induced by a high-fat diet. Our results show that, although these models do not manifest premature aging, the senolytic drugs dasatinib, navitoclax, and venetoclax have an anti-inflammatory effect that results in the amelioration of chronic inflammation.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Peixe-Zebra , Compostos de Anilina , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes , Senescência Celular , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , Inflamação/tratamento farmacológico , Senoterapia , Inibidores de Serina Proteinase/farmacologia , Sulfonamidas
4.
PLoS Biol ; 19(11): e3001455, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34748530

RESUMO

Several studies have revealed a correlation between chronic inflammation and nicotinamide adenine dinucleotide (NAD+) metabolism, but the precise mechanism involved is unknown. Here, we report that the genetic and pharmacological inhibition of nicotinamide phosphoribosyltransferase (Nampt), the rate-limiting enzyme in the salvage pathway of NAD+ biosynthesis, reduced oxidative stress, inflammation, and keratinocyte DNA damage, hyperproliferation, and cell death in zebrafish models of chronic skin inflammation, while all these effects were reversed by NAD+ supplementation. Similarly, genetic and pharmacological inhibition of poly(ADP-ribose) (PAR) polymerase 1 (Parp1), overexpression of PAR glycohydrolase, inhibition of apoptosis-inducing factor 1, inhibition of NADPH oxidases, and reactive oxygen species (ROS) scavenging all phenocopied the effects of Nampt inhibition. Pharmacological inhibition of NADPH oxidases/NAMPT/PARP/AIFM1 axis decreased the expression of pathology-associated genes in human organotypic 3D skin models of psoriasis. Consistently, an aberrant induction of NAMPT and PARP activity, together with AIFM1 nuclear translocation, was observed in lesional skin from psoriasis patients. In conclusion, hyperactivation of PARP1 in response to ROS-induced DNA damage, fueled by NAMPT-derived NAD+, mediates skin inflammation through parthanatos cell death.


Assuntos
Inflamação/patologia , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Parthanatos , Poli(ADP-Ribose) Polimerases/metabolismo , Pele/patologia , Animais , Fator de Indução de Apoptose/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/genética , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/patologia , Larva/metabolismo , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Parthanatos/efeitos dos fármacos , Parthanatos/genética , Poli Adenosina Difosfato Ribose/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Secretadas Inibidoras de Proteinases/deficiência , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Psoríase/genética , Psoríase/patologia , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/metabolismo
5.
Dev Comp Immunol ; 115: 103881, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33038343

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is the most important hydrogen carrier in cell redox reactions. It is involved in mitochondrial function and metabolism, circadian rhythm, the immune response and inflammation, DNA repair, cell division, protein-protein signaling, chromatin remodeling and epigenetics. Recently, NAD+ has been recognized as the molecule of life, since, by increasing NAD+ levels in old or sick animals, it is possible to improve their health and lengthen their lifespan. In this review, we summarize the contribution of NAD+ metabolism to inflammation, with special emphasis in the major NAD+ biosynthetic enzyme, nicotinamide phosphoribosyl transferase (NAMPT), and the NAD+-consuming enzyme, poly(ADP-ribose) polymerase (PARP). The extracurricular roles of these enzymes, i.e. the proinflammatory role of NAMPT after its release, and the ability of PARP to promote a novel form of cell death, known as parthanatos, upon hyperactivation are revised and discussed in the context of several chronic inflammatory diseases.


Assuntos
Inflamação/imunologia , Nicotinamida Fosforribosiltransferase/metabolismo , Parthanatos/imunologia , Poli(ADP-Ribose) Polimerases/metabolismo , Animais , Doença Crônica , Modelos Animais de Doenças , Humanos , Inflamação/tratamento farmacológico , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...