RESUMO
Bromodomains are structural folds present in all eukaryotic cells that bind to other proteins recognizing acetylated lysines. Most proteins with bromodomains are part of nuclear complexes that interact with acetylated histone residues and regulate DNA replication, transcription, and repair through chromatin structure remodeling. Bromodomain inhibitors are small molecules that bind to the hydrophobic pocket of bromodomains, interfering with the interaction with acetylated histones. Using a fluorescent probe, we have developed an assay to select inhibitors of the bromodomain factor 2 of Trypanosoma cruzi (TcBDF2) using fluorescence polarization. Initially, a library of 28,251 compounds was screened in an endpoint assay. The top 350-ranked compounds were further analyzed in a dose-response assay. From this analysis, seven compounds were obtained that had not been previously characterized as bromodomain inhibitors. Although these compounds did not exhibit significant trypanocidal activity, all showed bona fide interaction with TcBDF2 with dissociation constants between 1 and 3 µM validating these assays to search for bromodomain inhibitors.
Assuntos
Polarização de Fluorescência , Ensaios de Triagem em Larga Escala , Proteínas de Protozoários , Tripanossomicidas , Trypanosoma cruzi , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Ensaios de Triagem em Larga Escala/métodos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismoRESUMO
Continuous efforts have been made to discover new drugs for the treatment of Chagas' disease, human African trypanosomiasis, and leishmaniasis. We have previously reported the synthesis and antileishmanial and antitrypanosomal (Y strain) properties of 2,3-disubstituted quinoxalines. Considering their promising antiparasitic potential, the present study was conducted to expand our search and take advantage of high-throughput assays to investigate the effects of quinoxaline derivatives against Leishmania donovani, Trypanosoma brucei, and Trypanosoma cruzi (Tulahuen strain). These compounds were active against the kinetoplastid parasites that were evaluated. The 2-chloro-3-methylsulfoxylsulfonyl and 2-chloro-3-methylsulfinyl quinoxalines were the most potent, and some of these derivatives were even more active than the reference drugs. Although the 2,3-diaryl-substituted quinoxalines were not active against all of the parasites, they were active against T. brucei and intracellular amastigotes of T. cruzi, without interfering with mammalian cell viability. These compounds presented encouraging results that will guide our future studies on in vivo bioassays towards the mode of action.