Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Energy Mater ; 5(11): 14092-14106, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36465262

RESUMO

ZnO-based dye-sensitized solar cells exhibit lower efficiencies than TiO2-based systems despite advantageous charge transport dynamics and versatility in terms of synthesis methods, which can be primarily ascribed to compatibility issues of ZnO with the dyes and the redox couples originally optimized for TiO2. We evaluate the performance of solar cells based on ZnO nanomaterial prepared by microwave-assisted solvothermal synthesis, using three fully organic benzothiadiazole-based dyes YKP-88, YKP-137, and MG-207, and alternative electrolyte solutions with the I-/I3 -, Co(bpy)3 2+/3+, and Cu(dmp)2 1+/2+ redox couples. The best cell performance is achieved for the dye-redox couple combination YKP-88 and Co(bpy)3 2+/3+, reaching an average efficiency of 4.7% and 5.0% for the best cell, compared to 3.7% and 3.9% for the I-/I3 - couple with the same dye. Electrical impedance spectroscopy highlights the influence of dye and redox couple chemistry on the balance of recombination and regeneration kinetics. Combined with the effects of the interaction of the redox couple with the ZnO surface, these aspects are shown to determine the solar cell performance. Minimodules based on the best systems in both parallel and series configurations reach 1.5% efficiency for an area of 23.8 cm2.

2.
Phys Chem Chem Phys ; 19(47): 32132-32142, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29182690

RESUMO

In this work, we study the influence of the distance between electrodes on the performance of dye-sensitized solar cells based on TiO2 using the organic dye LEG4 and a Cu(dmp)2 redox couple (dmp = dimethyl phenantroline). The solar cells are characterized by a large open circuit voltage of up to 1.03 V, and an efficiency of 8.2% has been achieved for a 5.3 µm thick TiO2 film using an epoxy resin-based sealed cell configuration with a minimal separation between electrodes. Transient short-circuit photocurrent measurements up to an intensity of 3 Suns show a significant decay in photocurrent after an initial peak current upon switching on the light for larger distance, resulting in a lower steady state photocurrent. For the smaller distance cells, the steady state photocurrent is linear with light intensity up to 2 Suns. Charge extraction measurements under short-circuit conditions show that reducing the distance between electrodes increases the electron collection efficiency and thus, the attainable photocurrent. Recombination losses increase with larger electrode separation distance and higher light intensity due to mass transport limitation of the redox mediator. Electrochemical impedance measurements confirm the effect of electrode distance on the redox couple transport, showing an additional loop with increasing distance. For the configuration where the TiO2 film is in very close proximity to the PEDOT-covered counter electrode, inductive behavior is observed at low frequencies. The inductive behavior disappears with the incorporation of an insulating porous ZrO2 layer. The equivalent circuit for the solar cell has been expanded to include this effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...