Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(21): e202400150, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38302733

RESUMO

In this study we develop a strategy to insulate 6,6 -Phenyl C61 butyric acid methyl ester (PCBM) on the basal plane of transition metal dichalcogenides (TMDs). Concretely single layers of MoS2, MoSe2, MoTe2, WS2, WSe2 and WTe2 and ultrathin MoO2 and WO2 were grown via chemical vapor deposition (CVD). Then, the thiol group of a PCBM modified with cysteine reacts with the chalcogen vacancies on the basal plane of TMDs, yielding PCBM-MoS2, PCBM-MoSe2, PCBM-WS2, PCBM-WSe2, PCBM-WTe2, PCBM-MoO2 and PCBM-WO2. Afterwards, all the hybrid materials were characterized using several techniques, including XPS, Raman spectroscopy, TEM, AFM, and cyclic voltammetry. Furthermore, PCBM causes a unique optical and electrical impact in every TMDs. For MoS2 devices, the conductivity and photoluminescence (PL) emission achieve a remarkable enhancement of 1700 % and 200 % in PCBM-MoS2 hybrids. Similarly, PCBM-MoTe2 hybrids exhibit a 2-fold enhancement in PL emission at 1.1 eV. On the other hand, PCBM-MoSe2, PCBM-WSe2 and PCBM-WS2 hybrids exhibited a new interlayer exciton at 1.29-1.44, 1.7 and 1.37-154 eV along with an enhancement of the photo-response by 2400, 3200 and 600 %, respectively. Additionally, PCBM-WTe2 and PCBM-WO2 showed a modest photo-response, in sharp contrast with pristine WTe2 or WO2 which archive pure metallic character.

2.
Small ; 20(19): e2311045, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38229547

RESUMO

Transition metal dichalcogenides (TMDs) are promising 2D nanomaterials for diverse applications, but their intrinsic chemical inertness hinders their modification. Herein, a novel approach is presented for the photocatalytic acylation of 2H-MoS2 and 2H-MoSe2, utilizing tetrabutyl ammonium decatungstate ((nBu4N)4W10O32) polyoxometalate complex as a catalyst and a conventional halogen lamp as a source of irradiation. By harnessing the semiconducting properties of TMDs, new avenues emerge for the functionalization of these materials. This novel photocatalytic protocol constitutes the first report on the chemical modification of 2D nanomaterials based on a catalytic protocol and applies to both aliphatic and aromatic substrates. The scope of the decatungstate-photocatalyzed acylation reaction of TMDs is explored by employing an alkyl and an aromatic aldehyde and the success of the methodology is confirmed by diverse spectroscopic, thermal, microscopy imaging, and redox techniques. This catalytic approach on modifying 2D nanomaterials introduces the principles of atom economy in a functionalization protocol for TMDs. It marks a transformative shift toward more sustainable and efficient methodologies in the realm of TMD modification and nanomaterial chemistry.

3.
ACS Nano ; 17(24): 25301-25310, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38085812

RESUMO

We deposit azafullerene C59N• radicals in a vacuum on the Au(111) surface for layer thicknesses between 0.35 and 2.1 monolayers (ML). The layers are characterized using X-ray photoemission (XPS) and X-ray absorption fine structure (NEXAFS) spectroscopy, low-temperature scanning tunneling microscopy (STM), and by density functional calculations (DFT). The singly unoccupied C59N orbital (SUMO) has been identified in the N 1s NEXAFS/XPS spectra of C59N layers as a spectroscopic fingerprint of the molecular radical state. At low molecular coverages (up to 1 ML), films of monomeric C59N are stabilized with the nonbonded carbon orbital neighboring the nitrogen oriented toward the Au substrate, whereas in-plane intermolecular coupling into diamagnetic (C59N)2 dimers takes over toward the completion of the second layer. By following the C59N• SUMO peak intensity with increasing molecular coverage, we identify an intermediate high-spin-density phase between 1 and 2 ML, where uncoupled C59N• monomers in the second layer with pronounced radical character are formed. We argue that the C59N• radical stabilization of this supramonolayer phase of monomers is achieved by suppressed coupling to the substrate. This results from molecular isolation on top of the passivating azafullerene contact layer, which can be explored for molecular radical state stabilization and positioning on solid substrates.

4.
Chemistry ; 29(51): e202301400, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37376954

RESUMO

This work describes a multi-step modification process for the covalent transformation of Kevlar fabric en route to the incorporation of graphene oxide (GO) nanosheets. Spectroscopic, thermal and microscopy imaging techniques have been employed to follow step-by-step the modification of Kevlar and the formation of the corresponding Kevlar-GO hybrid fabric. The level of Kevlar's functionalization can be controlled with the nitration time, the first reaction in the multi-sequence organic transformations, for obtaining the hybrid fabric with a content of GO up to 30 %. Most importantly, the covalent post-modification of Kevlar does not occur in the expense of the other excellent mechanical properties of the fabric. Under optimal conditions, the Kevlar-GO hybrid fabric shows a 20 % enhancement of the ultimate strength. Notably, when the Kevlar-GO hybrid fabric was exposed to cyanobacterial Synechococcus the bacteria growth was fully inhibited. Overall, the covalently modified fabric demonstrated significant antibacterial behavior, excellent strength and stability under common processes. Due to its simplicity, the methodology presented in this work not only promises to result in a standard procedure to functionalize the mer units of Kevlar with a variety of chemicals and nanomaterials but it can be also extended for the modification and hybridization of other fabrics.


Assuntos
Grafite , Nanoestruturas , Grafite/química , Nanoestruturas/química , Antibacterianos/farmacologia , Antibacterianos/química
5.
JACS Au ; 3(3): 775-784, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37006761

RESUMO

Although the synthesis of monolayer transition metal dichalcogenides has been established in the last decade, synthesizing nanoribbons remains challenging. In this study, we have developed a straightforward method to obtain nanoribbons with controllable widths (25-8000 nm) and lengths (1-50 µm) by O2 etching of the metallic phase in metallic/semiconducting in-plane heterostructures of monolayer MoS2. We also successfully applied this process for synthesizing WS2, MoSe2, and WSe2 nanoribbons. Furthermore, field-effect transistors of the nanoribbons show an on/off ratio of larger than 1000, photoresponses of 1000%, and time responses of 5 s. The nanoribbons were compared with monolayer MoS2, highlighting a substantial difference in the photoluminescence emission and photoresponses. Additionally, the nanoribbons were used as a template to build one-dimensional (1D)-1D or 1D-2D heterostructures with various transition metal dichalcogenides. The process developed in this study offers simple production of nanoribbons with applications in several fields of nanotechnology and chemistry.

6.
Nanoscale ; 15(12): 5948-5953, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36883438

RESUMO

van der Waals (vdW) heterostructures, which can be assembled with various two-dimensional materials, provide a versatile platform for exploring emergent phenomena. Here, we report an observation of the photovoltaic effect in a WS2/MoS2 vdW heterostructure. Light excitation of WS2/MoS2 at a wavelength of 633 nm yields a photocurrent without applying bias voltages, and the excitation power dependence of the photocurrent shows characteristic crossover from a linear to square root dependence. Photocurrent mapping has clearly shown that the observed photovoltaic effect arises from the WS2/MoS2 region, not from Schottky junctions at electrode contacts. Kelvin probe microscopy observations show no slope in the electrostatic potential, excluding the possibility that the photocurrent originates from an unintentionally formed built-in potential.

7.
Nanoscale ; 15(9): 4570-4580, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36762571

RESUMO

We fabricated sensors by modifying the surface of MoS2 and WS2 with COVID-19 antibodies and investigated their characteristics, including stability, reusability, sensitivity, and selectivity. Thiols and disulfanes in antibodies strongly interact with vacant Mo or W sites of MoS2 or WS2, yielding durable devices that are stable for several days in the air or water. More importantly, detachment of the antibodies is suppressed even during the aggressive cleaning process of the devices at pH 3, which allows reusing the same device in several experiments without appreciable loss of sensitivity. Therefore, the nanodevice may be employed in samples of different patients. Further, we found a limit of detection (LOD) of 1 fg ml-1 at room temperature, time responses of 1 second, and selectivity against interferences such as KLH protein or Albumin.


Assuntos
COVID-19 , Humanos , Albuminas , Anticorpos , Limite de Detecção , Molibdênio , Antígenos/imunologia
8.
ChemSusChem ; 16(8): e202202322, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36629277

RESUMO

Covalent functionalization of tungsten disulfide (WS2 ) with photo- and electro-active nickel-porphyrin (NiP) is reported. Exfoliated WS2 interfacing NiP moieties with 1,2-dithiolane linkages is assayed in the oxygen evolution reaction under both dark and illuminated conditions. The hybrid material presented, WS2 -NiP, is fully characterized with complementary spectroscopic, microscopic, and thermal techniques. Standard yet advanced electrochemical techniques, such as linear sweep voltammetry, electrochemical impedance spectroscopy, and calculation of the electrochemically active surface area, are used to delineate the catalytic profile of WS2 -NiP. In-depth study of thin films with transient photocurrent and photovoltage response assays uncovers photo-enhanced electrocatalytic behavior. The observed photo-enhanced electrocatalytic activity of WS2 -NiP is attributed to the presence of Ni centers coordinated and stabilized by the N4 motifs of tetrapyrrole rings at the tethered porphyrin derivative chains, which work as photoreceptors. This pioneering work opens wide routes for water oxidation, further contributing to the development of non-noble metal electrocatalysts.

9.
Nanoscale ; 14(40): 15060-15072, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36200654

RESUMO

Herein, we introduced the versatility of free-base and zinc-metallated porphyrin (H2P and ZnP, respectively) to combine with boron azadipyrromethene (azaBDP) NIR absorbing species, for extending their photophysical interest and covalently anchored onto graphene. In particular, the covalent functionalization of graphene with those H2P-azaBDP and ZnP-azaBDP dyads ensured an invariable structure, in which both chromophores and graphene are in intimate contact, free of aggregations and impurities. Both H2P-azaBDP and ZnP-azaBDP dyads were found to perform energy transfer processes between the chromophores, however, only ZnP-azaBDP confirmed additional charge separation between the chromophores yielding the ZnP˙+-azaBDP˙- charge-separated state. On the other hand, graphene in (H2P-azaBDP)-graphene and (ZnP-azaBDP)-graphene hybrids was found to act as an electron donor, yielding (H2P-azaBDP˙-)-graphene˙+ and (ZnP-azaBDP˙-)-graphene˙+ charge-separated states at an ultrafast timescale. The creation of such donor-acceptor systems, featuring graphene as an electron donor and Vis-to-NIR electron-acceptor dyads, expands their utility when considered in optoelectronic applications.

10.
ACS Nano ; 15(12): 19225-19232, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34843228

RESUMO

We have developed a simple and straightforward way to realize controlled postdoping toward 2D transition metal dichalcogenides (TMDs). The key idea is to use low-kinetic-energy dopant beams and a high-flux chalcogen beam simultaneously, leading to substitutional doping with controlled dopant densities. Atomic-resolution transmission electron microscopy has revealed that dopant atoms injected toward TMDs are incorporated substitutionally into the hexagonal framework of TMDs. The electronic properties of doped TMDs (Nb-doped WSe2) have shown drastic change and p-type action with more than 2 orders of magnitude increase in current. Position-selective doping has also been demonstrated by the postdoping toward TMDs with a patterned mask on the surface. The postdoping method developed in this work can be a versatile tool for 2D-based next-generation electronics in the future.

11.
Nanoscale ; 13(19): 8948-8957, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33960349

RESUMO

We describe the basal plane functionalization of chemically exfoliated molybdenum disulfide (ce-MoS2) nanosheets with a benzo-15-crown-5 ether (B15C5), promoted by the chemistry of diazonium salts en route to the fabrication and electrochemical assessment of an ion-responsive electrode. The success of the chemical modification of ce-MoS2 nanosheets was investigated by infrared and Raman spectroscopy, and the amount of the incorporated crown ether was estimated by thermogravimetric analysis. Raman spatial mapping at on-resonance excitation allowed us to disclose the structural characteristics of the functionalized B15C5-MoS2 nanosheets and the impact of basal plane functionalization to the stabilization of the 1T phase of ce-MoS2. Morphological investigation of the B15C5-MoS2 hybrid was implemented by atomic force microscopy and high-resolution transmission electron microscopy. Furthermore, fast-Fourier-transform analysis and in situ energy dispersive X-ray spectroscopy revealed the crystal lattice of the modified nanosheets and the presence of crown-ether addends, respectively. Finally, B15C5-MoS2 electrodes were constructed and evaluated as ion-selective electrodes for sodium ions in aqueous solution and an artificial sweat matrix.


Assuntos
Éteres de Coroa , Molibdênio , Eletrodos , Íons , Microscopia Eletrônica de Transmissão
12.
Angew Chem Int Ed Engl ; 60(16): 9120-9126, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33559945

RESUMO

The covalent functionalization of MoS2 with a perylenediimide (PDI) is reported and the study is accompanied by detailed characterization of the newly prepared MoS2 -PDI hybrid material. Covalently functionalized MoS2 interfacing organic photoactive species has shown electron and/or energy accepting, energy reflecting or bi-directional electron accepting features. Herein, a rationally designed PDI, unsubstituted at the perylene core to act as electron acceptor, forces MoS2 to fully demonstrate for the first time its electron donor capabilities. The photophysical response of MoS2 -PDI is visualized in an energy-level diagram, while femtosecond transient absorption studies disclose the formation of MoS2 .+ -PDI.- charge separated state. The tunable electronic properties of MoS2 , as a result of covalently linking photoactive organic species with precise characteristics, unlock their potentiality and enable their application in light-harvesting and optoelectronic devices.

13.
J Chem Phys ; 153(8): 084702, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872864

RESUMO

In this study, we develop a new approach for stabilization of metallic phases of monolayer MoS2 through the formation of lateral heterostructures composed of semiconducting/metallic MoS2. The structure of metallic (a mixture of T and T') and semiconducting (2H) phases was unambiguously characterized by Raman spectroscopy, x-ray photoelectron spectroscopy, photoluminescence imaging, and transmission electron microscope observations. The amount of NaCl, reaction temperature, reaction time, and locations of substrates are essential for controlling the percentage of metallic/semiconducting phases in lateral heterostructures; loading a large amount of NaCl at low temperatures with short reaction times prefers metallic phases. The existence of the semiconducting phase in MoS2 lateral heterostructures significantly enhances the stability of the metallic phases through passivation of reactive edges. The same approach can be applied to other transition metal dichalcogenides (TMDs), such as WS2, leading to boosting of basic research and application of TMDs in metallic phases.

14.
Chemistry ; 26(29): 6652-6661, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32159249

RESUMO

The preparation of an entirely supramolecular, multichromophoric azaborondipyrromethene (ABDP)/zinc tetraphenylporphyrin (ZnTPP)/exfoliated graphene (GR) nanoensemble was accomplished. The ABDP derivative bears glycol chains for enhancing solubility and a pyridine functionality for allowing coordination with ZnTPP. The ABDP/ZnTPP/GR nanoensemble was characterized in terms of morphology and composition by using complementary microscopy imaging, thermogravimetric analysis, Raman as well as steady-state and time-resolved absorption and emission spectroscopy. The photophysical and electrochemical assessment of ABDP/ZnTPP/GR as well as the binding properties of the ABDP/ZnTPP complex, employed as a reference, are presented. Energy and electron transfer events were observed in ABDP/ZnTPP upon photoexcitation. However, in the case of ABDP/ZnTPP/GR, the graphene-induced aggregation of the chromophores alters their electronic interactions, enhancing the energy/electron transfer process between them.

15.
Chemistry ; 26(29): 6635-6642, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32104936

RESUMO

The preparation of an MoS2 -polymer carbon nanodot (MoS2 -PCND) hybrid material was accomplished by employing an easy and fast bottom-up synthetic approach. Specifically, MoS2 -PCND was realized by the thermal decomposition of ammonium tetrathiomolybdate and the in situ complexation of Mo with carboxylic acid units present on the surface of PCNDs. The newly prepared hybrid material was comprehensively characterized by spectroscopy, thermal means, and electron microscopy. The electrocatalytic activity of MoS2 -PCND was examined in the hydrogen evolution reaction (HER) and compared with that of the corresponding hybrid material prepared by a top-down approach, namely MoS2 -PCND(exf-fun), in which MoS2 was firstly exfoliated and then covalently functionalized with PCNDs. The MoS2 -PCND hybrid material showed superior electrocatalytic activity toward the HER with low Tafel slope, excellent electrocatalytic stability, and an onset potential of -0.16 V versus RHE. The superior catalytic performance of MoS2 -PCND was rationalized by considering the catalytically active sites of MoS2 , the effective charge/energy-transfer phenomena from PCNDs to MoS2 , and the synergetic effect between MoS2 and PCNDs in the hybrid material.

16.
Nanomaterials (Basel) ; 10(2)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093023

RESUMO

Environmental degradation of transition metal disulfides (TMDs) is a key stumbling block in a range of applications. We show that a simple one-pot non-covalent pyrene coating process protects TMDs from both photoinduced oxidation and environmental aging. Pyrene is immobilized non-covalently on the basal plane of exfoliated MoS2 and WS2. The optical properties of TMD/pyrene are assessed via electronic absorption and fluorescence emission spectroscopy. High-resolution scanning transmission electron microscopy coupled with electron energy loss spectroscopy confirms extensive pyrene surface coverage, with density functional theory calculations suggesting a strongly bound stable parallel-stacked pyrene coverage of ~2-3 layers on the TMD surfaces. Raman spectroscopy of exfoliated TMDs while irradiating at 0.9 mW/4 µm2 under ambient conditions shows new and strong Raman bands due to oxidized states of Mo and W. Yet remarkably, under the same exposure conditions TMD/pyrene remain unperturbed. The current findings demonstrate that pyrene physisorbed on MoS2 and WS2 acts as an environmental barrier, preventing oxidative surface reactions in the TMDs catalyzed by moisture, air, and assisted by laser irradiation. Raman spectroscopy confirms that the hybrid materials stored under ambient conditions for two years remained structurally unaltered, corroborating the beneficial role of pyrene for not only hindering oxidation but also inhibiting aging.

17.
Angew Chem Int Ed Engl ; 59(10): 3976-3981, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31825548

RESUMO

Molybdenum disulfide nanosheets covalently modified with porphyrin were prepared and fully characterized. Neither the porphyrin absorption nor its fluorescence was notably affected by covalent linkage to MoS2 . The use of transient absorption spectroscopy showed that a complex ping-pong energy-transfer mechanism, namely from the porphyrin to MoS2 and back to the porphyrin, operated. This study reveals the potential of transition-metal dichalcogenides in photosensitization processes.

18.
Angew Chem Int Ed Engl ; 58(17): 5712-5717, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30791182

RESUMO

The functionalization of MoS2 is of paramount importance for tailoring its properties towards optoelectronic applications and unlocking its full potential. Zinc phthalocyanine (ZnPc) carrying an 1,2-dithiolane oxide linker was used to functionalize MoS2 at defect sites located at the edges. The structure of ZnPc-MoS2 was fully assessed by complementary spectroscopic, thermal, and microscopy imaging techniques. An energy-level diagram visualizing different photochemical events in ZnPc-MoS2 was established and revealed a bidirectional electron transfer leading to a charge separated state ZnPc.+ -MoS2 .- . Markedly, evidence of the charge transfer in the hybrid material was demonstrated using fluorescence spectroelectrochemistry. Systematic studies performed by femtosecond transient absorption revealed the involvement of excitons generated in MoS2 in promoting the charge transfer, while the transfer was also possible when ZnPc was excited, signifying their potential in light-energy-harvesting devices.

19.
ACS Appl Mater Interfaces ; 11(6): 5947-5956, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30666865

RESUMO

Transition-metal dichalcogenides (TMDs) attract increased attention for the development of donor-acceptor materials enabling improved light harvesting and optoelectronic applications. The development of novel donor-acceptor nanoensembles consisting of poly(3-thiophene sodium acetate) and ammonium functionalized MoS2 and WS2 was accomplished, while photoelectrochemical cells were fabricated and examined. Attractive interactions between the negatively charged carboxylate anion on the polythiophene backbone and the positively charged ammonium moieties on the TMDs enabled in a controlled way and in aqueous dispersions the electrostatic association of two species, evidenced upon titration experiments. A progressive quenching of the characteristic fluorescence emission of the polythiophene derivative at 555 nm revealed photoinduced intraensemble energy and/or electron transfer from the polymer to the conduction band of the two TMDs. Photoelectrochemical assays further confirmed the establishment of photoinduced charge-transfer processes in thin films, with distinct responses for the MoS2- and WS2-based systems. The MoS2-based ensemble exhibited enhanced photoanodic currents offering additional channels for hole transfer to the solution, whereas the WS2-based one displayed increased photocathodic currents providing supplementary pathways of electron transfer to the solution. Moreover, scan direction depending on photoanodic and photocathodic currents suggested the existence of yet unexploited photoinduced memory effects. These findings highlight the value of electrostatic interactions for the creation of novel donor-acceptor TMD-based ensembles and their relevance for managing the performance of photoelectrochemical and optoelectronic processes.

20.
J Am Chem Soc ; 140(40): 12862-12869, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30211547

RESUMO

The emission of a bright blue fluorescence is a unique feature common to the vast variety of polymer carbon dots (CDs) prepared from carboxylic acid and amine precursors. However, the difficulty to assign a precise chemical structure to this class of CDs yet hampers the comprehension of their underlying luminescence principle. In this work, we show that highly blue fluorescent model types of CDs can be prepared from citric acid and ethylenediamine through low temperature synthesis routes. Facilitating controlled polycondensation processes, the CDs reveal sizes of 1-1.5 nm formed by a compact network of short polyamide chains of about 10 monomer units. Density functional theory calculations of these model CDs uncover the existence of a spatially separated highest occupied molecular orbital and a lowest unoccupied molecular orbital located at the amide and carboxylic groups, respectively. Photoinduced charge transfer between these groups thus constitutes the origin of the strong blue fluorescence emission. Hydrogen-bond-mediated supramolecular interactions between the polyamide chains enabling a rigid network structure further contribute to the enhancement of the radiative process. Moreover, the photoinduced charge transfer processes in the polyamide network structure easily explain the performance of CDs in applications as revealed in studies on metal ion sensing. These findings thus are of general importance to the further development of polymer CDs with tailored properties as well as for the design of technological applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...