Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 2795, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808915

RESUMO

Postharvest chilling injury (PCI) reduces fruit quality and shelf-life in tomato (Solanum lycopersicum L.). PCI has been traditionally studied in the pericarp, however its development is likely heterogeneous in different fruit tissues. To gain insight into PCI's spatio-temporal development, we used postharvest biomarkers e.g. respiration and ethylene rates, ion leakage etc., to confirm the occurrence of PCI, and compared these data with molecular (gene expression), biophysical (MRI data) and biochemical parameters (Malondialdehyde (MDA) and starch content) from the pericarp or columella. Tissues were stored at control (12.5 °C) or PCI-inducing temperatures (2.5 or 5 °C) followed by rewarming at 20 °C. MRI and ion leakage revealed that cold irreversibly impairs ripening-associated membrane liquefaction; MRI also showed that the internal and external fruit tissues responded differently to cold. MDA and especially starch contents, were affected by chilling in a tissue-specific manner. The expression of the six genes studied: ACO1 and ACS2 (ripening), CBF1 (cold response), DHN, AOX1a and LoxB (stress-related) showed non-overlapping temporal and spatially-specific responses. Overall, the data highlighted the interconnectedness of fruit cold response and ripening, and showed how cold stress reconfigures the latter. They further underscored that multidimensional spatial and temporal biological studies are needed to develop effective solutions to PCI.


Assuntos
Resposta ao Choque Frio , Frutas/fisiologia , Solanum lycopersicum/fisiologia , Análise Espaço-Temporal , Armazenamento de Alimentos , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Estresse Oxidativo
2.
J Sci Food Agric ; 93(2): 227-37, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22806403

RESUMO

BACKGROUND: The postharvest quality and shelf life of spinach are greatly influenced by cultural practices. Reduced spinach shelf life is a common quandary in the Salinas Valley, California, where current agronomic practices depend on high nitrogen (N) rates. This study aimed to describe the postharvest fracture properties of spinach leaves in relation to N fertilization, leaf age and spinach cultivar. RESULTS: Force-displacement curves, generated by a puncture test, showed a negative correlation between N fertilization and the toughness, stiffness and strength of spinach leaves (P > 0.05). Younger leaves (leaves 12 and 16) from all N treatments were tougher than older leaves (leaves 6 and 8) (P > 0.05). Leaves from the 50 and 75 ppm total N treatments irrespective of spinach cultivar had higher fracture properties and nutritional quality than leaves from other N treatments (P > 0.05). Total alcohol-insoluble residues (AIR) and pectins were present at higher concentrations in low-N grown plants. These plants also had smaller cells and intercellular spaces than high-N grown leaves (P > 0.05). CONCLUSION: Observed changes in physicochemical and mechanical properties of spinach leaves due to excess nitrogen fertilization were significantly associated with greater postharvest leaf fragility and lower nutritional quality.


Assuntos
Fertilizantes , Qualidade dos Alimentos , Ciclo do Nitrogênio , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Spinacia oleracea/química , Spinacia oleracea/crescimento & desenvolvimento , California , Tamanho Celular , Parede Celular/química , Parede Celular/metabolismo , Fenômenos Químicos , Espaço Extracelular , Fertilizantes/efeitos adversos , Humanos , Fenômenos Mecânicos , Valor Nutritivo , Pectinas/análise , Pectinas/metabolismo , Pigmentos Biológicos/análise , Pigmentos Biológicos/metabolismo , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Especificidade da Espécie , Spinacia oleracea/citologia , Spinacia oleracea/metabolismo , Água/análise
3.
Food Microbiol ; 25(4): 558-65, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18456110

RESUMO

This research investigates the efficacy of gaseous ozone, applied under partial vacuum in a controlled reaction chamber, for the elimination of Salmonella inoculated on melon rind. The performance of high dose, short duration treatment with gaseous ozone, in this pilot system, on the microbial and sensory quality of fresh-cut cantaloupes was also evaluated. Gaseous ozone (10,000 ppm for 30 min under vacuum) reduced viable, recoverable Salmonella from inoculated physiologically mature non-ripe and ripe melons with a maximum reduction of 4.2 and 2.8 log CFU/rind-disk (12.6 cm(2)), respectively. The efficacy of ozone exposure was influenced by carrier matrix. Salmonella adhering to cantaloupe was more resistant to ozone treatment when suspended in skim-milk powder before aqueous inoculation to the rind. This indicated that organic matter interferes with the contact efficiency and resultant antimicrobial activity of gaseous ozone applied as a surface disinfectant. Conversely, in the absence of an organic carrier, Salmonella viability loss was greater on dry exocarp surfaces than in the wetted surfaces, during ozone treatment, achieving reductions of 2.8 and 1.4 initial log CFU/rind-disk, respectively. Gaseous ozone treatment of 5000 and 20,000 ppm for 30 min reduced total coliforms, Pseudomonas fluorescens, yeast and lactic acid bacteria recovery from fresh-cut cantaloupe. A dose Ct-value (concentration x exposure time) of 600,000 ppm min achieved maximal log CFU/melon-cube reduction, under the test conditions. Finally, fresh-cut cantaloupe treated with gaseous ozone, maintained an acceptable visual quality, aroma and firmness during 7-day storage at 5 degrees C. Conclusions derived from this study illustrate that gaseous ozone is an effective option to risk reduction and spoilage control of fresh and fresh-cut melon. Moreover, depending on the timing of contamination and post-contamination conditions, rapid drying combined with gaseous ozone exposure may be successful as combined or sequential disinfection steps to minimize persistence of Salmonella on the surface of cantaloupe melons and transference during fresh-cut processing of home preparation. Based on these results, greater efficacy would be anticipated with mature but non-ripe melons while ripe tissues reduce the efficacy of these gaseous ozone treatments, potentially by oxidative reaction with soluble refractive solids.


Assuntos
Cucumis melo/microbiologia , Desinfecção , Ozônio/metabolismo , Salmonella/isolamento & purificação , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Meios de Cultura , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/fisiologia , Análise de Alimentos/métodos , Manipulação de Alimentos , Microbiologia de Alimentos , Frutas/microbiologia , Lactobacillaceae/isolamento & purificação , Lactobacillaceae/fisiologia , Viabilidade Microbiana , Pseudomonas fluorescens/isolamento & purificação , Pseudomonas fluorescens/fisiologia , Controle de Qualidade , Salmonella/fisiologia , Leveduras/isolamento & purificação , Leveduras/fisiologia
4.
Food Microbiol ; 25(1): 162-8, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17993390

RESUMO

The effect of gaseous ozone and hot water, alone or in combination, on the sensory and microbial quality of cantaloupe melon was investigated. Escherichia coli O157:H7 transmission from the rind to edible melon flesh during cutting practices was also investigated. Four different treatments consisting of hot water (75 degrees C, 1min), gaseous ozone (10,000ppm, 30min), gaseous ozone supplied by carbon monoxide gas and the combination of hot water and gaseous ozone were evaluated. Sensory quality and growth evolution of aerobic mesophilic and psychrotrophic bacteria, coliforms and molds were studied. In general, hot water, gaseous ozone, and the combination of hot water and gaseous ozone were effective in reducing total microbial population. The combination of hot water and gaseous ozone was the most effective treatment to control microbial growth achieving 3.8, 5.1, 2.2 and 2.3log reductions for mesophilic and psychrotrophic bacteria, molds and coliforms, respectively. However no significant differences were observed between gaseous ozone and gaseous ozone supplied by with carbon monoxide gas. There was no evidence of damage in melons treated with hot water, ozone or their combination and they maintained initial texture and aroma. Therefore, the combination of hot water and gaseous ozone may be an efficient and promising treatment for controlling microbial growth and maintaining sensory quality of melons.


Assuntos
Cucumis melo/microbiologia , Escherichia coli O157/efeitos dos fármacos , Manipulação de Alimentos/métodos , Conservação de Alimentos/métodos , Ozônio/farmacologia , Monóxido de Carbono/farmacologia , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Escherichia coli O157/crescimento & desenvolvimento , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos , Temperatura Alta , Humanos , Oxidantes Fotoquímicos/farmacologia , Saneamento/métodos , Paladar , Fatores de Tempo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...