Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Nano Lett ; 24(12): 3793-3800, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38484388

RESUMO

Plasmonic superstructures hold great potential in encrypted information chips but are still unsatisfactory in terms of resolution and maneuverability because of the limited fabrication strategies. Here, we develop an antielectric potential method in which the interfacial energy from the modification of 5-amino-2-mercapto benzimidazole (AMBI) ligand is used to overcome the electric resistance between the Au nanospheres (NSs) and substrate, thereby realizing the in situ growth of a Au-Ag heterodimers array in large scale. The morphology, number, and size of Ag domains on Au units can be controlled well by modulating the reaction kinetics and thermodynamics. Experiments and theoretical simulations reveal that patterned 3D Au-2D Ag and 3D Au-3D Ag dimer arrays with line widths of 400 nm exhibit cerulean and cyan colors, respectively, and achieve fine color modulation and ultrahigh information resolution. This work not only develops a facile strategy for fabricating patterned plasmonic superstructures but also pushes the plasmon-based high-resolution encrypted information chip into more complex applications.

2.
Talanta ; 271: 125731, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309116

RESUMO

Field-effect transistors (FETs) have been developed as pH sensors by using various device structures, fabrication technologies, and sensing film materials. Different transistor structures, like extended-gate (EG) FETs, floating-gate FET sensors, and dual-gate (DG) FETs, can enhance the sensor performance. In this article, we report the effects of using solution-gate and bottom-gate FET configurations on pH sensing and investigate the influence of different ionic concentrations of buffers in the measured signals. The surface charge of hafnium dioxide (HfO2) affected by the buffer pH, with/without the modification of polyethylene glycol (PEG) terminated with hydroxyl groups, and the location of applied gate voltage are vital factors to the sensor performance in pH sensing. Based on the results, the solution-gate FET exhibits good pH sensitivity even in the high ionic strength solutions of bis-tris propane (BTP), and these values of pH sensitivity are close to the Nernst limit (59.2 mV/pH). In general, silane-PEG-OH modification can reduce the deviations of measured signals in pH sensing. The performance of bottom-gate FET is inferior in the BTP buffers with high ionic solutions but suitable to be operated in low ionic concentrations, such as 0.1, 1, and 10 mM BTP buffers. The size of the ions was also studied and discussed. The solution-gate FET demonstrates excellent performance under high ionic strengths, meaning a more significant potential for detecting biological molecules under physiological conditions.

3.
Angew Chem Int Ed Engl ; 63(16): e202400562, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382041

RESUMO

Halide solid electrolytes, known for their high ionic conductivity at room temperature and good oxidative stability, face notable challenges in all-solid-state Li-ion batteries (ASSBs), especially with unstable cathode/solid electrolyte (SE) interface and increasing interfacial resistance during cycling. In this work, we have developed an Al3+-doped, cation-disordered epitaxial nanolayer on the LiCoO2 surface by reacting it with an artificially constructed AlPO4 nanoshell; this lithium-deficient layer featuring a rock-salt-like phase effectively suppresses oxidative decomposition of Li3InCl6 electrolyte and stabilizes the cathode/SE interface at 4.5 V. The ASSBs with the halide electrolyte Li3InCl6 and a high-loading LiCoO2 cathode demonstrated high discharge capacity and long cycling life from 3 to 4.5 V. Our findings emphasize the importance of specialized cathode surface modification in preventing SE degradation and achieving stable cycling of halide-based ASSBs at high voltages.

4.
Infect Immun ; 92(3): e0049423, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38294242

RESUMO

Mitochondria play roles in the resistance of Caenorhabditis elegans against pathogenic bacteria by regulating mitochondrial unfolded protein response (UPRmt). Caffeic acid (CA) (3,4-dihydroxy cinnamic acid) is a major phenolic compound present in several plant species, which exhibits biological activities such as antioxidant, anti-fibrosis, anti-inflammatory, and anti-tumor properties. However, whether caffeic acid influences the innate immune response and the underlying molecular mechanisms remains unknown. In this study, we find that 20 µM caffeic acid enhances innate immunity to resist the Gram-negative pathogen Pseudomonas aeruginosa infection in C. elegans. Meanwhile, caffeic acid also inhibits the growth of pathogenic bacteria. Furthermore, caffeic acid promotes host immune response by reducing the bacterial burden in the intestine. Through genetic screening in C. elegans, we find that caffeic acid promotes innate immunity via the transcription factor ATFS-1. In addition, caffeic acid activates the UPRmt and immune response genes for innate immune response through ATFS-1. Our work suggests that caffeic acid has the potential to protect patients from pathogen infection.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Ácidos Cafeicos , Animais , Humanos , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Mitocôndrias/metabolismo
5.
Adv Sci (Weinh) ; 11(12): e2306239, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225745

RESUMO

A self-confined solid-state dewetting mechanism is reported that can fundamentally reduce the use of sophisticated nanofabrication techniques, enabling efficient wafer-scale patterning of non-closely packed (ncp) gold nanoparticle arrays. When combined with a soft lithography process, this approach can address the reproducibility challenges associated with colloidal crystal self-assembly, allowing for the batch fabrication of ncp gold arrays with consistent ordering and even optical properties. The resulting dewetted ncp gold nanoparticle arrays exhibit strong surface lattice resonance properties when excited in inhomogeneous environments under normal white-light incidence. With these SLR properties, the sensitive plasmonic sensing of molecular interactions is achieved using a simple transmission setup. This study will advance the development of miniaturized and portable devices.

6.
ACS Omega ; 8(27): 24663-24672, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37457460

RESUMO

The mechanism by which oil recovery can be enhanced by different injection methods of CO2 miscible flooding to alleviate the influence of heterogeneous reservoirs was studied to optimize the injection methods, further improving oil recovery. According to the reservoir heterogeneity characteristics of the TI oil formation group in Lunnan Oilfield, a 1 m double-layer long core was designed and prepared for four CO2 miscible displacement experiments with different injection methods. By analyzing the variation in the injection-production parameters, the displacement effects of different injection methods were compared, and the mechanism of enhanced oil recovery (EOR) was summarized. The results indicate the following. ① The displacement efficiency of the different injection methods lies in the following order. Alternate CO2-water injection, continuous CO2 flooding, cyclic CO2 flooding, and alternate CO2-hydrocarbon gas injection. ② The recovery of crude oil via CO2 miscible flooding in heterogeneous reservoirs relies on both convective diffusion and miscible mass transfer. Convective diffusion depends mainly on control of the displacement pressure differential and the plugging of preferential seepage channels in high-permeability areas, while miscible mass transfer depends mainly on the swept range of the convective diffusion and the degree of miscibility between CO2 and crude oil. ③ To improve the recovery efficiency of CO2 miscible flooding in heterogeneous reservoirs, it is necessary to choose an injection method that optimizes these two aspects.

7.
Talanta ; 265: 124851, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37354627

RESUMO

This study proposes a paper/PMMA hybrid device designed to isolate exosomes and extract exosomal miRNA, followed by quantitative analysis. It aims to provide simplified and convenient sample preparation for potential point-of-care testing (POCT) processes. In contrast to previous work conducted by our research team, which focused on isolating exosomes and exosomal nucleic acids, this study introduces a novel approach by integrating paper and a PMMA mold with a microvalve controlled design. This innovative method enables the entire process to be performed on paper. The pressure on the paper could be adjusted by turning the screw upon the valve to change the pore size and permeability of the paper, which achieved the effect of controlling the flow rate of fluids. The paper was designed to have an immunoaffinity area for capturing exosomes and a sol-gel silica coating area for extracting miRNA. The paper-based ELISA (p-ELISA) exhibited a limit of detection and a limit of quantitation of 6 × 107 and 5.4 × 108 particles/mL, respectively, for exosome measurement. The reverse transcription quantitative polymerase chain reaction (RT-qPCR) revealed that the Ct (threshold cycle) value for quantifying the miR-21 in the miRNAs extracted by the proposed paper/PMMA hybrid device was comparable to the Ct value of the commercial extraction kit. The developed paper/PMMA hybrid device with a microvalve-controlled design should be incorporated into the POCT system to extract exosomal miRNAs.


Assuntos
Exossomos , MicroRNAs , Polimetil Metacrilato , Exossomos/química , MicroRNAs/análise
8.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372974

RESUMO

Emerging evidence has shown that microRNAs play pivotal roles in wound healing. MicroRNA-21 (miR-21) was previously found to upregulate in order to fulfill an anti-inflammation role for wounds. Exosomal miRNAs have been identified and explored as essential markers for diagnostic medicine. However, the role of exosomal miR-21 in wounds has yet to be well studied. In order to facilitate the early management of poorly healing wounds, we developed an easy-to-use, rapid, paper-based microfluidic-exosomal miR-21 extraction device to determine wound prognosis in a timely manner. We isolated and then quantitatively examined exosomal miR-21 in wound fluids from normal tissues and acute and chronic wounds. Eight improving wounds displayed lower levels of exosomal miR-21 expression after wound debridement. However, four instances of increased exosomal miR-21 expression levels were notably associated with patients with poor healing wounds despite aggressive wound debridement, indicating a predictive role of tissue exosomal miR-21 for wound outcome. Paper-based nucleic acid extraction device provides a rapid and user-friendly approach for evaluating exosomal miR-21 in wound fluids as a means of monitoring wounds. Our data suggest that tissue exosomal miR-21 is a reliable marker for determining current wound status.


Assuntos
Exossomos , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Cicatrização/genética , Projetos de Pesquisa , Exossomos/genética , Exossomos/metabolismo
9.
Small Methods ; 7(7): e2300280, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37086111

RESUMO

Ni-rich layered cathodes with ultrahigh nickel content (≥90%), for example LiNi0.9 Co0.1 O2 (NC0.9), are promising for next-generation high-energy Li-ion batteries (LIBs), but face stability issues related to structural degradation and side reactions during the electrochemical process. Here, surface modulation is demonstrated by integrating a Li+ -conductive nanocoating and gradient lattice doping to stabilize the active cathode efficiently for extended cycles. Briefly, a wet-chemistry process is developed to deposit uniform ZrO(OH)2 nanoshells around Ni0.905 Co0.095 (OH)2 (NC0.9-OH) hydroxide precursors, followed by high temperature lithiation to create reinforced products featuring Zr doping in the crust lattice decorated with Li2 ZrO3 nanoparticles on the surface. It is identified that the Zr4+ infiltration reconstructed the surface lattice into favorable characters such as Li+ deficiency and Ni3+ reduction, which are effective to combat side reactions and suppress phase degradation and crack formation. This surface control is able to achieve an optimized balance between surface stabilization and charge transfer, resulting in an extraordinary capacity retention of 96.6% after 100 cycles at 1 C and an excellent rate capability of 148.8 mA h g-1 at 10 C. This study highlights the critical importance of integrated surface modulation for high stability of cathode materials in next-generation LIBs.

10.
J Am Chem Soc ; 145(13): 7397-7407, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36961942

RESUMO

Nickel-rich layered oxides (NLOs) are considered as one of the most promising cathode materials for next-generation high-energy lithium-ion batteries (LIBs), yet their practical applications are currently challenged by the unsatisfactory cyclability and reliability owing to their inherent interfacial and structural instability. Herein, we demonstrate an approach to reverse the unstable nature of NLOs through surface solid reaction, by which the reconstructed surface lattice turns stable and robust against both side reactions and chemophysical breakdown, resulting in improved cycling performance. Specifically, conformal La(OH)3 nanoshells are built with their thicknesses controlled at nanometer accuracy, which act as a Li+ capturer and induce controlled reaction with the NLO surface lattices, thereby transforming the particle crust into an epitaxial layer with localized Ni/Li disordering, where lithium deficiency and nickel stabilization are both achieved by transforming oxidative Ni3+ into stable Ni2+. An optimized balance between surface stabilization and charge transfer is demonstrated by a representative NLO material, namely, LiNi0.83Co0.07Mn0.1O2, whose surface engineering leads to a highly improved capacity retention and excellent rate capability with a strong capability to inhibit the crack of NLO particles. Our study highlights the importance of surface chemistry in determining chemical and structural behaviors and paves a research avenue in controlling the surface lattice for the stabilization of NLOs toward reliable high-energy LIBs.

11.
Nanoscale Adv ; 5(6): 1776-1783, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36926572

RESUMO

We develop a tunable, ultrafast (5 seconds), and mass-producible seed-mediated synthesis method to prepare branched Au superparticles consisting of multiple small Au island-like nanoparticles by a wet chemical route. We reveal and confirm the toggling formation mechanism of Au superparticles between the Frank-van der Merwe (FM) growth mode and the Volmer-Weber (VW) growth mode. The key factor of this special structure is the frequent toggling between the FM (layer by layer) growth mode and the VW (island) growth mode induced by 3-aminophenol, which is continuously absorbed on the surface of newborn Au nanoparticles, leading to a relatively high surface energy during the overall synthesis process, thus achieving an island on island growth. Such Au superparticles demonstrate broadband absorption from visible to near-infrared regions due to their multiple plasmonic coupling and hence they have important applications in sensors, photothermal conversion and therapy, etc. We also exhibit the excellent properties of Au superparticles with different morphologies, such as NIR-II photothermal conversion and therapy and SERS detection. The photothermal conversion efficiency under 1064 nm laser irradiation was calculated to be as high as 62.6% and they exhibit robust photothermal therapy efficiency. This work provides insight into the growth mechanism of plasmonic superparticles and develops a broadband absorption material for highly efficient optical applications.

12.
Sensors (Basel) ; 23(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36679421

RESUMO

Interleukin 6 (IL-6) has been regarded as a biomarker that can be applied as a predictor for the severity of COVID-19-infected patients. The IL-6 level also correlates well with respiratory dysfunction and mortality risk. In this work, three silanization approaches and two types of biorecognition elements were used on the silicon nanowire field-effect transistors (SiNW-FETs) to investigate and compare the sensing performance on the detection of IL-6. Experimental data revealed that the mixed-SAMs-modified silica surface could have superior surface morphology to APTES-modified and APS-modified silica surfaces. According to the data on detecting various concentrations of IL-6, the detection range of the aptamer-functionalized SiNW-FET was broader than that of the antibody-functionalized SiNW-FET. In addition, the lowest concentration of valid detection for the aptamer-functionalized SiNW-FET was 2.1 pg/mL, two orders of magnitude lower than the antibody-functionalized SiNW-FET. The detection range of the aptamer-functionalized SiNW-FET covered the concentration of IL-6, which could be used to predict fatal outcomes of COVID-19. The detection results in the buffer showed that the anti-IL-6 aptamer could produce better detection results on the SiNW-FETs, indicating its great opportunity in applications for sensing clinical samples.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanofios , Humanos , Silício , Transistores Eletrônicos , Interleucina-6 , Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , Dióxido de Silício , Anticorpos
13.
Analyst ; 147(23): 5419-5427, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36314762

RESUMO

Developing carbon-based materials with high catalytic performance and sensitivity has significance in low-cost and highly efficient nanozymes. Herein, for the first time, Cu,N-codoped hollow carbon nanospheres (CuNHCNs) with highly active Cu-Nx sites were successfully assembled through a template-free strategy, in which Cu2+-poly(m-phenylenediamine) (Cu-PmPD) nanospheres were utilized as the source of Cu, N and C. Benefiting from the synergistic effect of the hollow spherical structure and optimized composition, the CuNHCN exhibits high affinity for 3,3',5,5'-tetramethylbenzidine and H2O2 with 0.0655 mM and 0.918 mM, respectively, which are superior to those of HRP and most metal-based nanozymes. Moreover, by employing glucose and ascorbic acid (AA) as biomolecule models, a CuNHCN-based colorimetric detection platform is developed. The CuNHCN exhibits superior peroxidase mimicking activity and sensitivity in detecting glucose and AA with a detection limit of 0.187 µM and 68.9 nM (S/N = 3), respectively. Also, the colorimetric detection based on the CuNHCN towards glucose and AA in human serum presents superior practicability and accuracy. The assay provides a new avenue for designing and fabricating low-cost peroxidase nanozymes with high performance in bioassays.


Assuntos
Nanosferas , Peroxidase , Humanos , Carbono/química , Colorimetria , Glucose , Peróxido de Hidrogênio/química , Nanosferas/química , Peroxidase/química , Peroxidases/química , Cobre/química , Nitrogênio/química
14.
Nanoscale ; 14(38): 14161-14168, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36111667

RESUMO

Gel electrophoresis techniques have been commonly applied in sieving plasmonic nanoparticle oligomers, while the intrinsic role in determining their phoresis velocity differences through the gel remains debatable. In this work, we explore the components and yield in each gel band after bundling two rationally designed types of nanoparticles in a system for electrophoretic separation. All results indicate that the mass property of plasmonic oligomers plays an essential role in determining their phoresis velocity divergences during separation. Further theoretical simulations reveal that the grounds for the mass-determining role stemmed from the random inelastic collisions among the oligomers and the gel-network microchannel. Moreover, under the guidance of such a mass-determining role, it is easy to achieve the direct electrophoretic separation of hetero-structured plasmonic dimers with high purity and high yield. This work will not only facilitate the precise nano-engineering of complex plasmonic oligomers with unique optical properties, but also might remove the obstacles toward their industrial manufacture with high purity.

15.
J Colloid Interface Sci ; 628(Pt B): 524-533, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36007417

RESUMO

The sluggish kinetic of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) severely hampers the commercial application of electrochemical water splitting, promoting the urgent exploration of high-efficient bifunctional electrocatalysts. Heteroatom doping and structure engineering have been identified as the most effective strategies to boost the catalytic activity of electrocatalysts. Herein, Mn doping and hollow structure were integrated in the design of Co-based transition metal phosphide catalyst to prepare Mn-CoP/Co2P nanotubes (denoted as Mn-CP NTs) by a facile template-free method. Confirmed by characterization analysis, the introduced Mn species were in high dispersion in the regular CoP/Co2P hollow tubular framework. Such a favorable design in composition and structure effectively boosted the catalytic activity of Mn-CP NTs toward electrochemical water splitting. The Mn-CP NTs showed superior HER and OER activity demonstrated by the low overpotentials of 82 mV (vs HER) and 309 mV (vs OER) at the current density of 10 mA cm-2, as well as the satisfactory durability. When used as both cathode and anode in electrolyzer for overall water splitting, only a low cell voltage of 1.67 V was required for the Mn-CP NTs to drive 10 mA cm-2, accompanied with excellent stability confirmed by over 50 h test.

16.
ACS Appl Mater Interfaces ; 14(28): 32026-32034, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35793568

RESUMO

The use of solid-state electrolytes (SSEs) instead of those liquid ones has found promising potential to achieve both high energy density and high safety for their applications in the next-generation energy storage devices. Unfortunately, SSEs also bring forth challenges related to solid-to-solid contact, making the stability of the electrode/electrolyte interface a formidable concern. Herein, using a garnet-type Li6.5La3Zr1.5Ta0.5O12 (LLZT) electrolyte as an example, we demonstrated a facile treatment based on the dip-coating technique, which is highly efficient in modifying the LLZT/Li interface by forming a MgO interlayer. Using polyvinyl pyrrolidone (PVP) as a coordination polymer, uniform and crack-free nanofilms are fabricated on the LLZT pellet with good control of the morphological parameters. We found that the MgO interlayer was highly effective to reduce the interfacial resistance to 6 Ω cm2 as compared to 1652 Ω cm2 of the unmodified interface. The assembled Li symmetrical cell was able to achieve a high critical current density of 1.2 mA cm-2 at room temperature, and it has a long cycling capability for over 4000 h. Using the commercialized materials of LiFePO4 and LiNi0.83Co0.07Mn0.1O2 as the cathode materials, the full cells based on the LLZT@MgO electrolyte showed excellent cyclability and high rate performance at 25 °C. Our study shows the feasibility of precise and controllable surface modification based on a simple liquid phase method and highlights the essential importance of interface control for the future application of high-performance solid-state batteries.

17.
Front Bioeng Biotechnol ; 10: 836082, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35497368

RESUMO

Exosomes, nanovesicles derived from cells, contain a variety of biomolecules that can be considered biomarkers for disease diagnosis, including microRNAs (miRNAs). Given knowledge and demand, inexpensive, robust, and easy-to-use tools that are compatible with downstream nucleic acid detection should be developed to replace traditional methodologies for point-of-care testing (POCT) applications. This study deploys a paper-based extraction kit for exosome and exosomal miRNA analytical system with some quantifying methods to serve as an easy sample preparation for a possible POCT process. Exosomes concentrated from HCT116 cell cultures were arrested on paper-based immunoaffinity devices, which were produced by immobilizing anti-CD63 antibodies on Whatman filter paper, before being subjected to paper-based silica devices for nucleic acids to be trapped by silica nanoparticles adsorbed onto Whatman filter paper. Concentrations of captured exosomes were quantified by enzyme-linked immunosorbent assay (ELISA), demonstrating that paper-based immunoaffinity devices succeeded in capturing and determining exosome levels from cells cultured in both neutral and acidic microenvironments, whereas microRNA 21 (miR-21), a biomarker for various types of cancers and among the nucleic acids absorbed onto the silica devices, was determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) to prove that paper-based silica devices were capable of trapping exosomal nucleic acids. The developed paper-based kit and the devised procedure was successfully exploited to isolate exosomes and exosomal nucleic acids from different biological samples (platelet-poor plasma and lesion fluid) as clinical applications.

18.
Small Methods ; 6(5): e2200148, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35324091

RESUMO

Layered LiCoO2 (LCO) is one of the most important cathodes for portable electronic products at present and in the foreseeable future. It becomes a continuous push to increase the cutoff voltage of LCO so that a higher capacity can be achieved, for example, a capacity of 220 mAh g-1 at 4.6 V compared to 175 mAh g-1 at 4.45 V, which is unfortunately accompanied by severe capacity degradation due to the much-aggravated side reactions and irreversible phase transitions. Accordingly, strict control on the LCO becomes essential to combat the inherent instability related to the high voltage challenge for their future applications. This review begins with a discussion on the relationship between the crystal structures and electrochemical properties of LCO as well as the failure mechanisms at 4.6 V. Then, recent advances in control strategies for 4.6 V LCO are summarized with focus on both bulk structure and surface properties. One closes this review by presenting the outlook for future efforts on LCO-based lithium ion batteries (LIBs). It is hoped that this work can draw a clear map on the research status of 4.6 V LCO, and also shed light on the future directions of materials design for high energy LIBs.

19.
ACS Appl Mater Interfaces ; 14(11): 13379-13387, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35266694

RESUMO

The development of potassium-ion batteries (PIBs) is challenged by the shortage of stable cathode materials capable of reversibly hosting the large-sized K+ (1.38 Å), which is prone to cause severe structural degradation and complex phase evolution during the potassiation/depotassiation process. Here, we identified that anionic doping of the layered oxides for PIBs is effective to combat their capacity fading at high voltage (>4.0 V). Taking P2-type K2/3Mn7/9Ni1/9Ti1/9O17/9F1/9 (KMNTOF) as an example, we showed that the partial substitution of O2- by F- enlarged the interlayer distance of the K2/3Mn7/9Ni1/9Ti1/9O2 (KMNTO), which becomes more favorable for fast K+ transition without violent structural destruction. Meanwhile, based on the experimental data and theoretical results, we identified that the introduction of F- anions effectively increased the redox-active Mn cationic concentration by lowering the average valence of the Mn element, accordingly providing more reversible capacity derived from the Mn3+/4+ redox couple, rather than oxygen redox. This anionic doping strategy enables the KMNTOF cathode to deliver a high reversible capacity of 132.5 mAh g-1 with 0.53 K+ reversible (de)intercalation in the structure. We expect that the discovery provides new insights into structural engineering for pursuing stable cathodes to facilitate the future applications of high-performance PIBs.

20.
Chem Commun (Camb) ; 58(15): 2556-2559, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35103727

RESUMO

A Li3PO4 nanocoating around a nickel-rich cathode material was successfully constructed via controlling the reaction between the electrode material and a preformed phosphorus-containing polymeric nanoshell; this not only effectively tackles the alkali residue challenge, but it also contributes to much-improved electrochemical performance being shown by a high-energy cathode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...