Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 317(5): C894-C899, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31509447

RESUMO

Statins are a cholesterol-lowering drug class that significantly reduce cardiovascular disease risk. Despite their safety and effectiveness, musculoskeletal side-effects, particularly myalgia, are prominent and the most common reason for discontinuance. The cause of statin-induced myalgia is unknown, so defining the underlying mechanism(s) and potential therapeutic strategies is of clinical importance. Here we tested the hypothesis that statin administration activates skeletal muscle system xC-, a cystine/glutamate antiporter, to increase intracellular cysteine and therefore glutathione synthesis to attenuate statin-induced oxidative stress. Increased system xC- activity would increase interstitial glutamate; an amino acid associated with peripheral nociception. Consistent with our hypothesis, atorvastatin treatment significantly increased mitochondrial reactive oxygen species (ROS; 41%) and glutamate efflux (up to 122%) in C2C12 mouse skeletal muscle myotubes. Statin-induced glutamate efflux was confirmed to be the result of system xC- activation, as cotreatment with sulfasalazine (system xC- inhibitor) negated this rise in extracellular glutamate. These findings were reproduced in primary human myotubes but, consistent with being muscle-specific, were not observed in primary human dermal fibroblasts. To further demonstrate that statin-induced increases in ROS triggered glutamate efflux, C2C12 myotubes were cotreated with atorvastatin and various antioxidants. α-Tocopherol and cysteamine bitartrate reversed the increase in statin-induced glutamate efflux, bringing glutamate levels between 50 and 92% of control-treated levels. N-acetylcysteine (a system xC- substrate) increased glutamate efflux above statin treatment alone: up to 732% greater than control treatment. Taken together, we provide a mechanistic foundation for statin-induced myalgia and offer therapeutic insights to alleviate this particular statin-associated side-effect.


Assuntos
Sistema y+ de Transporte de Aminoácidos/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Mialgia/induzido quimicamente , Mialgia/metabolismo , Animais , Atorvastatina/efeitos adversos , Atorvastatina/farmacologia , Linhagem Celular , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Camundongos , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo
2.
Biochem Biophys Res Commun ; 495(1): 499-505, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29127005

RESUMO

The capacity for skeletal muscle to repair from daily insults as well as larger injuries is a vital component to maintaining muscle health over our lifetime. Given the importance of skeletal muscle for our physical and metabolic well-being, identifying novel factors mediating the growth and repair of skeletal muscle will thus build our foundational knowledge and help lead to potential therapeutic avenues for muscle wasting disorders. To that end, we investigated the expression of T-cell death associated gene 51 (TDAG51) during skeletal muscle repair and studied the response of TDAG51 deficient (TDAG51-/-) mice to chemically-induced muscle damage. TDAG51 mRNA and protein expression within uninjured skeletal muscle is almost undetectable but, in response to chemically-induced muscle damage, protein levels increase by 5 days post-injury and remain elevated for up to 10 days of regeneration. To determine the impact of TDAG51 deletion on skeletal muscle form and function, we compared adult male TDAG51-/- mice with age-matched wild-type (WT) mice. Body and muscle mass were not different between the two groups, however, in situ muscle testing demonstrated a significant reduction in force production both before and after fatiguing contractions in TDAG51-/- mice. During the early phases of the regenerative process (5 days post-injury), TDAG51-/- muscles display a significantly larger area of degenerating muscle tissue concomitant with significantly less regenerating area compared to WT (as demonstrated by embryonic myosin heavy chain expression). Despite these early deficits in regeneration, TDAG51-/- muscles displayed no morphological deficits by 10 days post injury compared to WT mice. Taken together, the data presented herein demonstrate TDAG51 expression to be upregulated in damaged skeletal muscle and its absence attenuates the early phases of muscle regeneration.


Assuntos
Deleção de Genes , Músculo Esquelético/fisiologia , Regeneração , Fatores de Transcrição/genética , Regulação para Cima , Animais , Linhagem Celular , Masculino , Camundongos Endogâmicos C57BL , Fadiga Muscular , Músculo Esquelético/lesões , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , RNA Mensageiro/genética , Fatores de Transcrição/metabolismo
3.
Front Physiol ; 8: 1088, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29311999

RESUMO

Those with diabetes invariably develop complications including cardiovascular disease (CVD). To reduce their CVD risk, diabetics are generally prescribed cholesterol-lowering 3-hydroxy-methylglutaryl coenzyme A reductase inhibitors (i.e., statins). Statins inhibit cholesterol biosynthesis, but also reduce the synthesis of a number of mevalonate pathway intermediates, leading to several cholesterol-independent effects. One of the pleiotropic effects of statins is the reduction of the anti-fibrinolytic hormone plasminogen activator inhibitor-1 (PAI-1). We have previously demonstrated that a PAI-1 specific inhibitor alleviated diabetes-induced delays in skin and muscle repair. Here we tested if statin administration, through its pleiotropic effects on PAI-1, could improve skin and muscle repair in a diabetic rodent model. Six weeks after diabetes onset, adult male streptozotocin-induced diabetic (STZ), and WT mice were assigned to receive control chow or a diet enriched with 600 mg/kg Fluvastatin. Tibialis anterior muscles were injured via Cardiotoxin injection to induce skeletal muscle injury. Punch biopsies were administered on the dorsal scapular region to induce injury of skin. Twenty-four days after the onset of statin therapy (10 days post-injury), tissues were harvested and analyzed. PAI-1 levels were attenuated in statin-treated diabetic tissue when compared to control-treated tissue, however no differences were observed in non-diabetic tissue as a result of treatment. Muscle and skin repair were significantly attenuated in Fluvastatin-treated STZ-diabetic mice as demonstrated by larger wound areas, less mature granulation tissue, and an increased presence of smaller regenerating muscle fibers. Despite attenuating PAI-1 levels in diabetic tissue, Fluvastatin treatment impaired cutaneous healing and skeletal muscle repair in STZ-diabetic mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...